VRIJE

UNIVERSITEIT
AMSTERDAM

VU Research Portal

Adapting software testing techniques to enhance software security
Haller, I.

2017

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Haller, I. (2017). Adapting software testing techniques to enhance software security.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

4 +
oo gy!._l.lsl

www.manaraa.com

https://research.vu.nl/en/publications/348d64ea-422f-4fea-bd8d-c118fd996596

Adapting Software Testing Techniques

To Enhance Software Security

Ph.D. Thesis

Istvan Haller

[je 4 & [ell Amsteldam, 201 ;

vrije Universiteit amsterdam

This work was funded by the Microsoft Research Ph.D. Scholarship Programme
through the project MRL2011-049.

Copyright © 2017 by Istvan Haller.

ISBN 978-94-6295-593-6

VRIJE UNIVERSITEIT

ADAPTING SOFTWARE TESTING TECHNIQUES
TO ENHANCE SOFTWARE SECURITY

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus
prof.dr. V. Subramaniam,
in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de Faculteit der Exacte Wetenschappen
op maandag 3 april 2017 om 11.45 uur
in de aula van de universiteit,
De Boelelaan 1105

door
Istvan Haller

geboren te Tirgu Mures, Roemenié

promotor: prof.dr.ir. H.J. Bos
copromotor: dr. C. Giuffrida

“For millions of years flowers have been producing thorns. For millions of years
sheep have been eating them all the same. And it’s not serious, trying to understand
why flowers go to such trouble to produce thorns that are good for nothing?”

Antoine de Saint-Exupéry, The Little Prince.

Acknowledgements

As I was ready to leave the beautiful city of Amsterdam to pursue a Ph.D. somewhere
else, several people recommended that I have a short chat with Herbert Bos about his
research. I agreed to the discussion, mostly to satisfy their curiosity, because I did
not think that I could not contribute anything valuable to his work. But as soon as |
left his office, I knew that my time in Amsterdam would be extended by many more
years. Thank you Herbert for taking a risk with me and for being such a great leader
to me during these years. At the same time, the experience would not have been the
same without the help of Asia Slowinska. Her perseverance and drive for perfection
shaped my development as a researcher and I will continue to strive for the ideals
that she passed onto me. Thank you Asia for being a role model and a friend at the
same time. Leadership-wise I cannot forget about Cristiano Giuffrida and Erik van
der Kouwe. You helped me revitalize my research when it hit rock bottom, through
your awesome ideas and guidance. I’m just sorry that we did not have the chance
to collaborate more, but I am hopeful that the future holds some surprises in this
regard.

Next, I would like to express my gratitude to all the members of my Ph.D. thesis
committee: Andy Tanenbaum, Thorsten Holz, Frank Piessens, Cristian Cadar and
Manuel Costa. Their valuable comments greatly contributed to improving the qual-
ity of this dissertation. I am especially grateful to Andy Tanenbaum, for encouraging
me to pursue this PhD opportunity and for the constant support throughout the expe-
rience. I am also extremely grateful to Thorsten Holz, Frank Piessens and Cristian
Cadar for all the opportunities I had in gaining personal insights about their research,
which allowed me to enhance mine, and to Manuel Costa for helping me transfer all
the skills I gained over these years into practical experience.

The experience.of the Ph.D. would not have been the same without the Systems
and Network Security group offering many opportunities for fun and creative times

vii

viii ACKNOWLEDGEMENTS

together. It was a privilege to work and befriend so many smart people in such a
small space. Thank you Lucian, Chen, Enes, Erik, Remco, Angelos, Andrei, Tad-
deiis, Koen, Sanjay, Radhesh, Dennis, Koustubha, Manolis, Kaveh and Ben.

I would also like to thank all the current and former members of the Computer
Systems group, who were always available to brainstorm or just to share cool stories.
A special thanks goes out to Caroline, who was always there for me, no matter how
much I messed up with paperwork, making her work difficult.

Amsterdam will always keep a special place in my heart, mostly thanks to the
Romanian student community, which took me in from day one and allowed for the
most memorable 6 years of my life. I will never forget the parties until 7AM or
the Easter feasts that we organized together to keep ourselves sane and smiling even
when it was hard. It was amazing to see so many people who could come together
and support each other. While I don’t want to single out people too much, I do
have to mention a couple of very special people from this group: Cristina, Andreea,
Gentiana, Florina and Calin.

Besides the experience in Amsterdam, I have to acknowledge all the guidance 1
received towards research back in Romania. A big thank you goes out to the mem-
bers of the Image Processing and Pattern Recognition group lead by professor Sergiu
Nedevschi, who gave me the first insights into top quality research. At the same time,
I would also like to thank professor Rodica Potolea for helping me find the right path
in the complicated world of academia.

Of course, none of this would have been possible without my wonderful parents
Piroska and Istvan. You have seen the potential in me very early on and helped
develop it without ever making it feel like pressure. Thank you for everything in
life!

Istvan Haller
Amsterdam, The Netherlands, January 2017

Contents

Acknowledgements vii
Contents ix
List of Figures xiii
List of Tables XV
Publications xvii
1 Introduction 1

2 Dowsing for overflows: A guided fuzzer to find buffer boundary violations 11

2.1
22

23

24

25

Introduction L 12
Bigpicture 14
2.2.1 Runningexample 14
2.2.2 High-level overview 16
Dowsing for candidate instructions 17
2.3.1 Building analysis groups 18
2.3.2 Conditions guarding analysis groups 18
2.3.3 Scoring array accesses e oo oo 19
Using tainting to find inputs that matter 19
2.4.1 Baseline: dynamic taint analysis 21
2.4.2 Field shifting to weed out false dependencies 21
Exploring candidate instructions 23
Baseline: symbolic execution 23
...................... 24

CONTENTS

2.5.3 Phase 2: huntingbugs 25
2.6 Evaluation 26
2.6.1 Casestudy: Nginx 26
2.6.2 OVerview e 29
27 Relatedwork 32
2.8 Conclusion 34

Scalable Data Structure Detection and Classification for C/C++ Binaries 37

3.1 Introduction 38
3.1.1 Contributions 39
312 Outline 39
3.2 Static versus dynamic analysis 40
3.3 Example applications oL 40
3.3.1 Casestudy 1: Malware analysis 41
3.3.2 Case study 2: Security hardening for third party applications 41
34 MEMPICK 42
3.5 Memory Graphs: Interconnected Heap Objects 44
3.6 From Memory Graph to Individual Data Structures 46
3.7 ShapeDetection o 47
3.7.1 Opverlapping Data Structure Identification 47
3.7.2 Data Structure Classification 48
3.7.3 Refinement Classifiers for Special Data Structures 49
3.8 Classification of Height-balanced Trees 50
39 FinalMapping L 51
3.10 Evaluation e 52
3.10.1 Popular Libraries 52
3.10.2 Applications 56
3.10.3 Systemcode 59
3.11 Complexity Analysis 60
3.11.1 Executing the application 61
3.11.2 Trace generation 61
3.11.3 Typeinference 62
3.11.4 Graph generation 63
3.11.5 Shapeanalysis 64
3.11.6 Summary of complexity analysis 65
3.12 Limitations and Future Work 65
313 RelatedWork 66
3.14 Conclusion L 68
ShrinkWrap: VTable Protection without Loose Ends 71
4.1 Introduction 72
4.2 __VTable ProtectionToday. 74

4.2.1 C++dynamic dispatching 74

CONTENTS Xi

4.2.2 VTable integrity and limitations 75
4.3 ShrinkWrapping the VTables 77
4.3.1 Precise call-site type inference 77
432 Legitimate VTabletargets 78
4.4 Stronger VTable Protection 80
441 Anextensionto VIV 80
4.42 Optimal VTable protection 81
45 Evaluation 83
4.5.1 Microbenchmark evaluating correctness 83
452 Chrome i e 84
4.6 RelatedWork 88
47 Conclusion e 89
4.8 Acknowledgment oo 90

5 METALLoc: Efficient and Comprehensive Metadata Management for

Software Security Hardening 91
5.1 Introduction 92
52 METALLOC. e 93
5.2.1 Efficient retrieval of page information 94
5.2.2 Static versus dynamic metadata 94

5.2.3 Instrumentation across memory types 96
5.2.4 Implementation specifics 97

5.3 Applications 97
5.3.1 Write Integrity Protection 98

5.3.2 BoundsChecking 98

5.3.3 Type Confusion Detection 99
5.3.4 Dangling Pointer Detection 99

54 Evaluation 100
5.5 Conclusion 100
5.6 Acknowledgment 101
6 TYPESAN: Practical Type Confusion Detection 103
6.1 Introduction 104
6.2 Background 105
6.2.1 Typeconfusion, 106
6.2.2 Defenses against type confusion 107

6.3 Threatmodel 108
6.4 OVErVIEWt i e e e 109
6.5 Instrumentationlayer 111
6.5.1 Instrumenting allocations 111

6.5.2 Instrumenting typecasts 113

6.6, Type management SeLVICe v . « - « « =« . o .4 e e . 113
6.6.1 Typelayouttables. 114

. Xii CONTENTS

6.6.2 Typerelationshiptables 115

6.6.3 Merging type information across source files 116

6.7 Metadata Storage Service e e e 116
6.8 Limitations 119
6.9 Evaluation 119
6.9.1 Performance. 120

6.9.2 Coverage 124

6.10 Relatedwork 126
6.11 Conclusion 127

7 Conclusion 129
References 133

Summary 147

2.1
22
23
24
25
2.6

3.1
32
33
34
35
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2

List of Figures

A buffer underrun vulnerability innginx 15
DOWSER- high-level overview 16
Example of data-flow graph and analysis group 18
Example of input shuffling in DOWSER 22
Scores of the analysis groups innginx 27
A comparison of random testing and two scoring functions 31
MEMPICK: high-level overview 42
Running example for MEMPICK 43
Example binarytree 48
MEMPICK’s decisiontree 50
Example of threaded binary tree 51
Visual representation of type merging 63
Example class hierarchy 79
Visualization of VTable parent relationships 80
Example of diamond inheritance 81
Example of VTablesets 82
CCDF of allowed VTable targets 85
CCDF of allowed methods 86
List of allowed methods in Chrome, 87
Proof-of-concept attack against VIV 88
Performance evaluation of ShrinkWrap. &9
METALLOC s data structures.o oo .. 95
Heap metadata management using METALLOC 97

xiii

Xiv

53

6.1
6.2
6.3
6.4
6.5

LIST OF FIGURES
C/C++ SPEC2006 overhead for METALLOC 101
Overview of TYPESAN components.o oo oo 110
Mapping from a pointer to a metadataentry. 118
Allocation performance as a function of allocated object size. 121
Allocation performance as a function of allocated object count. 122

Typecast performance as a function of allocated object count. 122

2.1
2.2

3.1
32
33
34
35
3.6
3.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

List of Tables

Overview of instructions involved in pointer arithmetic 20
Applications tested with DOWSER 35
MEMPICK’s rules to classify overlays 49
MEMPICK’s evaluation across 16 libraries 54
MEMPICK’s gap size evaluation across 16 libraries 55
Number of C/C++ lines of code for the 10 real-world applications . 57
MEMPICK’s evaluation across 10 real-world applications 69
MEMPICK’s analysis time evaluation across 10 real-world applications 70
MEMPICK’s evaluation for the 4 FUSE-based file systems 70
Coverage of checkerson SPEC 105
Performance of checkerson SPEC 106
High-level feature overview of checkers. 108
Allocation types tracked by checkers 109
Performance overhead of TYPESAN on SPEC CPU2006 123
Memory usage of TYPESAN on SPEC CPU2006 124
Instrumentations.o 125
Typecast COVErage.« v v v v v e e 126

XV

Publications

This dissertation includes a number of research papers, as appeared in the following
conference proceedings ':

Istvan Haller, Asia Slowinska, Matthias Neugschwandtner and Herbert Bos. Dowsing for Over-
flows: A Guided Fuzzer to Find Buffer Boundary Violations®. In Proceedings of the 22nd
USENIX Security Symposium (Usenix Security 13), pages 49-64, 2013, Washington DC,
USA.

Istvan Haller, Asia Slowinska and Herbert Bos. Scalable data structure detection and classifi-
cation for C/C++ binaries®. In Empirical Software Engineering Journal, pages 1-33, 2015,
Springer.

Istvan Haller, Enes Goktag, Elias Athanasopoulos, Georgios Portokalidis and Herbert Bos.
ShrinkWrap: VTable Protection Without Loose Ends*. In Proceedings of the 31st Annual
Computer Security Applications Conference (ACSAC 2015), pages 341-350, 2015, Los An-
geles, USA.

Awarded Best Student Paper.

Istvan Haller, Erik van der Kouwe, Cristiano Giuffrida and Herbert Bos. METAlloc: Efficient
and Comprehensive Metadata Management for Software Security Hardening®. In Proceed-
ings of the 9th European Workshop on System Security (EuroSec 2016), pages 5:1-5:6, 2016,
London, United Kingdom.

IThe text differs from the original version in minor editorial changes made to improve readability.
2 Appears in Chapter 2.
3 Appears in Chapter 3.
4Appears in Chapter 4.
5 Appears in Chapter 5.

xvii

Xvii PUBLICATIONS

Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida and Herbert Bos, Erik
van der Kouwe. TypeSan: Practical Type Confusion Detection®. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pages 517-528,

2016, Vienna, Austria.

Related publications not included in the dissertation are listed in the following:

Istvan Haller, Asia Slowinska, Matthias Neugschwandtner and Herbert Bos. Dowser: a guided
fuzzer to find buffer overflow vulnerabilities In Proceedings of the 6th European Workshop
on Systems Security (EuroSec 13), 2013, Prague, Czech Republic.

Istvan Haller, Asia Slowinska and Herbert Bos. MemPick: High-level data structure detection
in C/C++ binaries In Proceedings of the 20th Working Conference on Reverse Engineering
(WCRE 2013), pages 3241, 2013, Koblenz, Germany.

Introduction

Software security describes the ability of software to disallow malicious users to
trigger undesirable behavior from the perspective of the user or the developer. Such
behavior is not part of the software specification and is typically triggered by lever-
aging bugs in the software design or implementation. Malicious developers can also
introduce this behavior unbeknown to their users, however in this dissertation we
will focus on the ability of benign software developers to keep their systems run-
ning per their desired specifications. The process of using a software bug to trigger
unexpected behavior is called exploitation and the bugs involved in this process are
called vulnerabilities. Famous recent examples of simple software bugs with major
security implication include the OpenSSL Heartbleed bug, the Android StageFright
vulnerability and the yearly Pwn2Own contest where hackers showcase the ability
to leverage bugs within he major browsers (Chrome, FireFox, Internet Explorer)
to hack users. These examples occurred against the best efforts of developers to
deploy state-of-the art software testing techniques and significant computational re-
sources [18; 10] to find the bugs before the malicious actors do. This shows that
existing software testing techniques are not sufficient alone to ensure the security
of complex software and further hardening techniques need to be deployed to keep
the bugs from transforming into vulnerabilities. In this dissertation, we explore the
potential to minimize the impact of vulnerabilities, starting from targeted testing for
key software bugs all the way to pin-point fail-safes for certain software bugs.
Memory corruption bugs represent one of the key vulnerability vectors used ma-
licious actors to this day. For example, the real-world issues presented previously all
fall into this category. Exploiting memory corruption bugs has been first presented
20 years ago [101], yet studies [128; 125] show that they are not going away in
the short-term. This class of bugs are an artifact of unsafe programming languages,
which allow the code to manipulate memory pointers explicitly, without validation.
While newer programing languages.(such as Rust, Java, C#) are designed to elimi-
nate memory corruption bugs entirely, there is still a large body of software built on

.
2

Q

©
<
o

2 CHAPTER 1. INTRODUCTION

top of unsafe languages, including all the popular browsers and operating systems.
For this reason, we focus on memory corruption bugs in this dissertation.

At first sight, comprehensive software testing seems like the best alternative to
eliminate all memory corruption bugs in a piece of code. While code analysis can
uncover a good portion of software defects, the unstructured nature of unsafe lan-
guages makes it impossible to make formal guarantees when dealing with these lan-
guages. Even entities heavily invested in software reliability, such as NASA [106]
primarily rely on software testing versus more formal methods when searching for
defects. But eliminating all memory corruption bugs, would require executing the
program with all possible input combinations, a task exponential in the size of the
input space. For this reason, the process of software testing typically involves heuris-
tics to maximize effectiveness given a set of computational resources. Effectiveness
can be measured either in terms of the coverage achieved across different types of
code artifacts or by counting the number of discovered bugs. The former is an indi-
rect measure of the effectiveness, as bugs can still reside in the uncovered artifacts,
but it is always applicable and consistent as software evolves. While the number of
bugs is a direct measure of the effectiveness for a certain test iteration, it does not of-
fer any baseline value, since the total number of bugs in a piece of code is unknown.
The number of discoverable bugs also fluctuates as software evolves and bugs are
fixed. Thus, most systems are designed to maximize coverage first and foremost.
Unfortunately, we found as part of this dissertation, that such coverage based heuris-
tics are particularly poorly suited when searching for certain types of vulnerabilities.
Furthermore, the existing heuristics were designed with users in mind, attempting
to maximize the functionalities and user inputs expected during normal execution.
In contrast, security deals with malicious actors who focus on uncommon, untested
behavior. Many exploitable bugs relate to functionality which is triggered rarely and
thus easily avoided during testing [131].

The best way to mitigate the impact of a memory corruption bug, missed dur-
ing testing, is to restrict the capabilities that an attacker can leverage during ex-
ploitation. Control-flow integrity is the most promising research direction [3; 141;
139; 127; 99; 37] in this area, attempting to enforce restrictions on the programs
control-flow based on its explicit specification. Memory corruption bugs grant the
ability to corrupt the data, but most exploits these days also require changes to the
control-flow of the program, steering it towards interesting behavior. Control-flow
integrity attempts to extract specifications about the program’s control-flow either
from the source code or the binary and to enforce it at run-time. The primary is-
sue with control-flow integrity is the lack of standardized approaches to extract this
specification. Researchers started out with course-grained approaches which used
only a rough over-approximation of the control-flow specification [141; 139], but
this was shortly proven to be ineffective against determined attackers [54; 55; 38].
This spawned a cat and mouse game of researchers racing to develop more refined
variants.of control-flow.integrity [127; 99] while also trying to exploit the solutions
presented by others [113; 30; 44; 23]. Furthermore, the complexity of the proposed

solutions makes them susceptible to implementation and design bugs of their own.
This dissertation as well as parallel work found such problems [63; 30] even within
solutions designed and developed by major software vendors. These issues severely
affect the confidence in control-flow integrity solutions, undermining its deployment
to the general public and making it hard to evaluate its full potential.

With so much research going towards ensuring control-flow integrity, some re-
searchers started to investigate a new generation of exploits which rely only on data
corruption [23; 70]. These attacks rely on interesting functionality available along
the expected execution path of the program. Attackers manipulate the data space
(stack, heap, globals) to change the side-effects of said execution path, triggering
unexpected behavior. While well designed control-flow integrity remains a valuable
solution against existing attacks, new defenses need to be developed to tackle this
new class of attacks. These defenses must tackle the root problem of memory cor-
ruption inherent to unsafe languages. Literature already contains several instrumen-
tation techniques [115; 137; 84; 7; 6], which are very effective at detecting individual
classes of memory corruption bugs, but they incur too much run-time overhead to be
applied at the end user. In practice these techniques become relegated as testing tools
to be used internally within development companies, but attackers can still leverage
undiscovered bugs when targeting users. Their overhead is composed of two fac-
tors, one is the need to track information at run-time (such as object type, object
size, etc.) and the other is a series of checks introduced throughout the code to vali-
date the integrity of the data. To minimize the impact of the latter, researchers have
proposed probabilistic defenses, which scale the checks with the desired software
overhead [131]. This allows a software developer to balance the security guarantees
with the performance requirements of the user. Unfortunately, the overhead of in-
formation tracking is unaffected by this optimization, leaving a residual overhead,
which can still be too much in certain applications. With the growing interest in
data-only attacks, reducing the overhead required by these instrumentations will be
the key in keeping one step ahead of malicious actors.

In this dissertation, we argue that the problems presented above can be mitigated
or even eliminated in certain instances via careful problem understanding and robust
design. We tackled each problem individually aiming to improve the quality to the
end-to-end vulnerability detection and mitigation. We first analyzed the reasoning
behind the difficulty to detect vulnerabilities using traditional software testing tools.
Based on these lessons we propose a novel testing approach to detect complex mem-
ory corruption bugs hidden deep within the code. This approach also showcases the
need to have a better understanding of the software under test and we propose a
novel data structure detection scheme for this purpose. Our experience with testing
allowed us to evaluate the control-flow integrity solution implemented in the GCC
compiler, leading us to find design and implementation faults which undermine its
purpose. We used this knowledge to generate the first practical ground-truth about
control-flow. specifications, allowing us to automatically test and evaluate the effec-
tiveness of similar solutions, in the future. Based on this data we also propose a novel

.
e

Q.

]
<
o

4 CHAPTER 1. INTRODUCTION

redesign of the system within the GCC compiler with provable optimality in terms
of security. Lastly we explored the space of instrumentation techniques designed to
discover faults during testing, to infer their requirements in terms of run-time infor-
mation tracking. We found that a common weakness of many of these systems is
the difficulty in associating allocations with custom run-time information efficiently.
Because of this finding, we propose a novel information tracking scheme which can
easily be plugged into these systems, while keeping run-time overhead at a mini-
mum. By improving the performance of these instrumentation techniques, we hope
to bring them closer to production systems, to allow them to mitigate against the
recent developments in data-only attacks.

In the following we offer a short description about each of these topics and the
contributions made within.

Guided testing for buffer overflows

In this dissertation, we first wanted to answer the research question if symbolic ex-
ecution can be adapted to detect buffer overflow type bugs. These bugs occur in
unsafe languages, such as C/C++, when an array dereference is corrupted to point to
a location outside of the target array. This can happen when malicious actors trig-
ger unexpected behavior within the offset computation logic. We selected symbolic
execution as the software testing technique of interest, since it is the primary fully
automatic technique used today both by industry and academia [53; 106; 21; 28].
Symbolic execution is named after its mechanisms to keep track of the relationship
between the program variables and inputs during execution. Expressions in the code
are modeled as explicit entities, instead of their results being computed using con-
crete values. Symbolic execution then tracks each branching statement in the code
to infer the precise input values which trigger the execution of a certain code-path.
The latter allows the technique to only generate program inputs which trigger a new
code-path.

As mentioned earlier, memory corruption bugs are still highly prevalent [128;
125] and our evaluations in this dissertation show that this class of bugs is particu-
larly difficult to detect using the symbolic execution tools available to researchers.
We identified that the code-coverage heuristics in use by these systems are in direct
contradiction with the characteristics of buffer overflows. Buffer overflows occur
because array indices can be corrupted after a series of operations, which typically
occur after deep within loops after a certain number of loop iterations (as the off-
set progresses slowly in every iteration). In contrast, code-coverage metrics push
the testing system to exit loops as quickly as possible, as multiple iterations rarely
increase the number of code artifacts covered by a given test input. Naively chang-
ing the heuristics to execute more loop iterations is not realistic, since the minimum
number. of iterations. required. to.trigger the bug is not known a-priori and testing
should still progress from one loop to another.

We decided to delve more deeply into the characteristics of exploitable buffer
overflow bugs, to help us define a novel and efficient heuristic. After analyzing
a many buffer overflow vulnerabilities reported in CVE (database of exploitable
bugs [91]), we inferred that these bugs typically occur either due to a misuse of
string processing functions or due to loops having complex index computation logic.
Since the first category has been addressed by modern software development pro-
cesses [32], we focused our attention to the second category. We found that 80%
of the bugs within loops reside in the top 20% most complex loops in terms of off-
set computation logic. This suggests the need to treat different loops with different
priorities during the testing process to maximize efficiency.

We use these finding to define a new gray-box testing mechanism, called guided
fuzzing. Guided fuzzing uses code analysis to identify interesting code artifacts re-
lated to a specific testing goal and applies symbolic execution iteratively, with each
iteration focused around a certain artifact. Since we operate in a gray-box fash-
ion, information about software modularity is not available, thus we need alternative
mechanisms to restrict symbolic execution to a certain artifact. We leverage taint
analysis to infer implicit modularity within the program inputs, expecting that each
interesting artifact is only influenced by a subset of the input space. By keeping
unrelated program inputs fixed during guided fuzzing the search space of symbolic
execution is restricted to code which can potentially influence the desired artifact.
We found that in practice input modularity is not enough to scale guided fuzzing on
complex programs, thus we proposed a second novel mechanism, based on machine
learning, to further focus the search. We propose using small inputs to learn about
the influences of individual branch statements and the target artifact and use this in-
formation to prioritize the most interesting branch statements when searching with a
larger search-space.

The combination of guiding mechanism allowed us to quickly detect buffer over-
flow vulnerabilities in several complex loops within applications, where existing
symbolic execution tools fail. While these results are specific to buffer overflows,
we believe that guided fuzzing is a valid technique for any bug family, which can be
associated to a certain type of code artifacts.

The guiding mechanisms were prototyped during my master thesis to check their
technical feasibility on a singular webserver type application. During this disserta-
tion we analyzed and confirmed the validity of guided fuzzing for the use case of
buffer overflow detection. The guiding mechanisms were also updated and refined
to deal with a proper selection of target programs.

Pointer-structure reversing

Our results with guided fuzzing showed great potential in using source analysis
to.improve. testing efficiency, but software security sometimes needs to deal with
closed-source binaries. One example of this scenario is the need to check third-party

.
e

Q.

]
<
o

6 CHAPTER 1. INTRODUCTION

components, which might affect the security of our software systems. We propose
to replace the source-level analysis in the proposed guided fuzzing approach with
recent advances in the field of binary reversing. For example, data structure analysis
has gained a lot of ground recently, with systems [119; 85] showing great reliability
and accuracy at identifying core data structures such as arrays or structs. One area
we found lacking in these tools however, were pointer structures, data structures re-
sulting from a connection of multiple heap objects, such as linked lists and trees.
So we posed the following research question: Can one identify and classify pointer
structures accurately within closed-source binaries?

We propose a novel system to identify and classify heap structures from an exe-
cution trace, without relying on other information sources or assumptions about the
program under test. The classification operates by splitting the heap into disjoint sets
of objects, according to course-grained typing inferred from the trace itself. The core
intuition behind this typing mechanism is the idea that objects of the same functional
type are operated on by the same group of instructions. In practice, we found that
data structure shapes for the same functional type can vary wildly from one imple-
mentation to another as developers each have their own optimization tricks. Instead
of complicating the shape inference logic, we decided on using a series of normaliza-
tion steps instead. These steps attempt to uncover the underlying structure, based on
the post-conditions guaranteed by the previous stages and observations made about
real-world examples. During evaluation, the system showed great precision in deal-
ing with a wide-range of implementations both from real-world binaries as well as
specific data structure libraries, confirming the benefits of the proposed approach.

Verified control-flow integrity

2013 saw the resurgence of control-flow integrity [141; 139] originally published in
2005 [3]. These implementations sacrificed some of the precision described in the
original paper to reduce the overhead and make the technique feasible to implement
in practice. Unfortunately, the lack of any reference implementation meant that the
security impact of the precision loss could never be evaluated objectively. Further
refinements were made to CFI in the last couple of years, but the evaluation issues
continued to persist. With our experience in software testing we posed the question:
Can we adapt some software testing technique to objectively evaluate the attack
surface remaining after control-flow integrity has been deployed?

We choose to target a specific sub-class of control-flow integrity our evaluation,
namely the protection of vtable-based call-sites. These code artifacts are specific to
the C++ dynamic dispatch mechanism and Google has shown them to be the main
attack surface in their browser [127]. What makes these artifacts special for CFI
is the availability of high-level C++ semantics which describe the rules for optimal
protection..C++ defines.that vtable-based call-sites can only ever call into polymor-
phic variants of the method described at the call-site. Several papers [127; 72] apply

this heuristic to claim optimal protection for this class of call-sites, but none of them
offer a comprehensive validation of their implementation.

We propose a novel white-box testing framework to test the behavior of these
implementations across all possible class hierarchies of a certain size. White-box
testing describes a manually designed testing suite aimed to test a certain program
feature comprehensively. Unfortunately, compilers are still too complex to be tested
comprehensively by automatic mechanisms, such as symbolic execution. Out of
all the vtable-based control-flow integrity solutions, only the one presented by Tice
et.al, VTV [127], has been made public, thus we were unable to test the other im-
plementations. To compensate for this. we made the framework open-source and
contacted the other authors about its availability for future evaluation. To our sur-
prise, we found multiple implementation and design issues in VTV already. This
was unexpected, considering that it has been available in GCC since version 4.9.0
(released more than a year before our experiments).

We also used our experiments to drive the design of a new vtable-protection
scheme based on VTV. The new system was also rigorously tested with the frame-
work presented above to ensure optimal protection for vtable-based call-sites, as well
as full application compatibility (modulo the correctness of the testing frame-work).
Not only does the new design offer provably more security than the official version
of VTV, it also reduces its impact on performance. Typically, security comes at a
performance cost, making our solution exceptionally effective, beating out a produc-
tion feature in all characteristics. These results show that comprehensive testing of
CFI is not impossible and this field should be explored further to eliminate potential
implementation and design bugs.

Efficient and uniform metadata tracking

As data-only attacks become more prominent with each passing conference [23; 70],
it becomes obvious that run-time verification is necessary to complement programs
written in unsafe languages. While several instrumentation techniques [115; 137;
84; 7; 6] have been shown to effectively stop data-only attacks, none of them made
it into production systems, due to the overhead they introduce. As mentioned ear-
lier, the overhead introduced by the verification itself can be scaled to the individual
requirements, but these systems share a common source of fixed overhead from the
need to track meta-information about memory objects. As such, we posed the re-
search question: “Is it possible to track complex metadata for objects residing in all
types of memory with low memory and run-time overhead?”.

To answer this question, we propose a novel metadata tracking scheme based
around the concept of object alignment. It is based on a simple observation, that if
all objects within a certain memory page are aligned to a certain byte-count, then it is
enough. to store metadata only once for every alignment-sized slot. This is due to the
inherent property that no slot is shared between two objects. The slot identifier can

.
e

Q.

]
<
o

8 CHAPTER 1. INTRODUCTION

also easily be computed for any pointer, just by knowing the alignment associated
to the corresponding memory page. This allows quick retrieval of the metadata with
the help of page-specific information, which can be stored in a page-table-like data
structure.

Organizing memory to correspond to the alignment restriction traditionally re-
quires custom-memory allocators and a custom stack layouts, which may break ap-
plication compatibility and performance. Fortunately, we discovered that some re-
cent memory management techniques already offer a suitable building-block to sup-
port our scheme and we could leverage their inherent performance and compatibility
guarantees to our benefit. The tcmalloc allocator [49] used by the Chrome browser
(and other Google projects) groups memory objects of similar sizes into each page
to speed up free-list tracking. This maps well to our requirement of having uniform
alignments within all memory pages on the heap. In case of the stack we benefit
from the recent developments in shadow-stack organization within the LLVM com-
piler, namely SafeStack [80], to move objects subjected to instrumentation onto a
secondary custom stack, where no ABI restrictions are in place.

By building on top of such strong existing systems, our proposed metadata track-
ing preserves the application compatibility that they offer as well as their fine-tuned
performance. In our experiments the addition of metadata tracking resulted in a
minimal overhead on top of the base system, even when tracking multiple bytes of
additional information for each object. This result enables the progressive deploy-
ment of run-time instrumentation as foreshadowed by other researchers [131].

To validate our approach, we used it as a building block to tackled a key emerg-
ing topic in unsafe languages, namely type safety. The existing solutions in this
space [105; 29; 84] were limited in scope due to the difficulty of tracking type infor-
mation along with objects allocated in different memory regions (stack, heap, etc.).
Our experience from this experiment was that the metadata tracking approach was
easy to integrate with the requirements of type tracking and verification, while easily
beating out previous solutions in terms of performance. The tracking itself ended up
being so efficient, that the overhead could be scaled all the way down to a 5% margin
on relevant applications by sacrificing coverage, similar to the approach of Wagner
etal. [131].

Organization of the Dissertation

This dissertation makes several contributions, with results published in refereed con-
ferences and workshops (Page xvii). The remainder is organized as follows:

e Chapter 2 presents DOWSER, a guided fuzzer using source analysis to identify
potentially dangerous loops in the program to focus symbolic execution around
said code fragments. Its guidance mechanism includes taint analysis and learning
to.minimize the cost required.to.test of the specified code fragments for buffer
overflow type bugs. This guidance and the focus on the individual code arti-

facts allows DOWSER to detect complex bugs deep within medium-sized appli-
cations, which was shown to be impossible with the existing systems. Chapter 2
appeared in Proceedings of the 22nd USENIX Security Symposium (Usenix Se-
curity 13) [62]. Personal contributions to this paper include the entire technical
background (design, development and evaluation) as well as the development of
the guided fuzzing concept.

.
e

Q.

]
<
o

Chapter 3 presents MEMPICK, a binary analysis framework, designed to detect
and classify pointer-based data structures, such as linked list or trees. It can ac-
curately classify said data structures without any information from the binary,
such as type information or functional boundaries. We demonstrate that it is pos-
sible to perform accurate classification on a wide-range of data structure shapes
and implementations with these restrictions in mind, by using a simple set of
normalization heuristics. Chapter 3 appeared in the journal Empirical Software
Engineering 2015 [64]. Personal contributions to this paper include the entire
technical background (design, development and evaluation).

Chapter 4 presents SHRINK WRAP, a set of design guidelines to implement vtable-
based control-flow integrity correctly to correspond with the C++ semantics.
It is based on the evaluation of existing solutions, which are shown to feature
multiple design and implementation bugs, when subjected to the rigorous eval-
uation within SHRINKWRAP. We also apply the design guidelines the protec-
tion implemented in the GCC compiler today showcasing performance and secu-
rity improvements at the same time, while preserving application compatibility.
SHRINKWRAP is the first example of a provably correct control-flow integrity
implementation and its evaluation framework can also be used by other imple-
mentations to validate their correctness. Chapter 4 appeared in Proceedings of
the 31st Annual Computer Security Applications Conference (ACSAC 2015) [63].
Personal contributions to this paper include the design and implementation of the
evaluation framework on one hand and the concepts within the design guidelines
as well as the development of the SHRINKWRAP prototype on the other hand.

* Chapter 5 presents METALLOC a framework designed to efficiently track ob-
ject metadata at run-time. It is designed with flexibility in mind, allowing it to
support a wide-range of instrumentation techniques, including bounds-checking,
type-based validation, data integrity or dangling pointer detection. METALLOC
is designed to follow recent developments in memory organization, thus it can
take advantage of and existing high-performance memory allocator as well as
custom stack layouts allowed within the compiler. Chapter 5 appeared in Pro-
ceedings of the 9th European Workshop on System Security (EuroSec 2016) [66].
Personal contributions to this paper include the entire technical background (de-
sign, development and evaluation) as well as the development of the variable
alignment memory shadowing concept.

» Chapter 6 presents TYPESAN a compiler-based instrumentation scheme which

10 CHAPTER 1. INTRODUCTION

validate potentially unsafe down-casts from C++ programs at run-time. Inter-
nally is uses METALLOC to track the type information internally at a very low
cost, validating our expectations about its flexibility as well as performance pro-
file. TYPESAN showcases the ability to tackle the problem of type safety with a
low performance overhead, while also significantly improving coverage across
type casting artefacts. Chapter 6 appeared in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security [65]. Personal
contributions to this paper include the design and development of all concepts
related to the paper.

e Chapter 7 concludes the dissertation, summarizing key results, analyzing current
limitations, and highlighting opportunities for future research directions.

Dowsing for overflows: A guided fuzzer
to find buffer boundary violations

Abstract

DOWSER is a ‘guided’ fuzzer that combines taint tracking, program analysis and
symbolic execution to find buffer overflow and underflow vulnerabilities buried deep
in a program’s logic. The key idea is that analysis of a program lets us pinpoint the
right areas in the program code to probe and the appropriate inputs to do so.
Intuitively, for typical buffer overflows, we need consider only the code that ac-
cesses an array in a loop, rather than all possible instructions in the program. After
finding all such candidate sets of instructions, we rank them according to an esti-
mation of how likely they are to contain interesting vulnerabilities. We then subject
the most promising sets to further testing. Specifically, we first use taint analysis to
determine which input bytes influence the array index and then execute the program
symbolically, making only this set of inputs symbolic. By constantly steering the
symbolic execution along branch outcomes most likely to lead to overflows, we were
able to detect deep bugs in real programs (like the nginx webserver, the inspircd
IRC server, and the ffmpeg videoplayer). Two of the bugs we found were previously
undocumented buffer overflows in ffmpeg and the poppler PDF rendering library.

11

N
o)
o)
2
Q
©
<
®)

12 CHAPTER 2. DOWSER

2.1 Introduction

We discuss DOWSER, a ‘guided’ fuzzer that combines taint tracking, program analy-
sis and symbolic execution, to find buffer overflow bugs buried deep in the program’s
logic.

Buffer overflows are perennially in the top 3 most dangerous software errors [36]
and recent studies suggest this will not change any time soon [128; 122]. There are
two ways to handle them. Either we harden the software with memory protectors
that terminate the program when an overflow occurs (at runtime), or we track down
the vulnerabilities before releasing the software (e.g., in the testing phase).

Memory protectors include common solutions like shadow stacks and canaries [33],
and more elaborate compiler extensions like WIT [6]. They are effective in pre-
venting programs from being exploited, but they do not remove the overflow bugs
themselves. Although it is better to crash than to allow exploitation, crashes are
undesirable too!

Thus, vendors prefer to squash bugs beforehand and typically try to find as many
as they can by means of fuzz testing. Fuzzers feed programs invalid, unexpected, or
random data to see if they crash or exhibit unexpected behavior'. As an example,
Microsoft made fuzzing mandatory for every untrusted interface for every product,
and their fuzzing solution has been running 24/7 since 2008 for a total of over 400
machine years [53].

Unfortunately, the effectiveness of most fuzzers is poor and the results rarely ex-
tend beyond shallow bugs. Most fuzzers take a ‘blackbox’ approach that focuses on
the input format and ignores the tested software target. Blackbox fuzzing is popular
and fast, but misses many relevant code paths and thus many bugs. Blackbox fuzzing
is a bit like shooting in the dark: you have to be lucky to hit anything interesting.

Whitebox fuzzing, as implemented in [53; 21; 28], is more principled. By means
of symbolic execution, it exercises all possible execution paths through the program
and thus uncovers all possible bugs — although it may take years to do. Since full
symbolic execution is slow and does not scale to large programs, it is hard to use it to
find complex bugs in large programs [21; 28]. In practice, the aim is therefore to first
cover as much unique code as possible. As a result, bugs that require a program to
execute the same code many times (like buffer overflows) are hard to trigger except
in very simple cases.

Eventual completeness, as provided by symbolic execution, is both a strength
and a weakness, and in this paper, we evaluate the exact opposite strategy. Rather
than testing all possible execution paths, we perform spot checks on a small number
of code areas that look likely candidates for buffer overflow bugs and test each in
turn.

The drawback of our approach is that we execute a symbolic run for each candi-
date code area—in an iterative fashion. Moreover, we can discover buffer overflows

ISee http: //www.fuzzing.org/ for a collection of available fuzzers

http://www.fuzzing.org/

2.1. INTRODUCTION 13

only in the loops that we can exercise. On the other hand, by homing in on promis-
ing code areas directly, we speed up the search considerably, and manage to find
complicated bugs in real programs that would be hard to find with most existing
fuzzers.

Contributions The goal we set ourselves was to develop an efficient fuzzer that ac-
tively searches for buffer overflows directly. The key insight is that careful analysis
of a program lets us pinpoint the right places to probe and the appropriate inputs to
do so. The main contribution is that our fuzzer directly zooms in on these buffer
overflow candidates and explores a novel ‘spot-check’ approach in symbolic execu-
tion.

To make the approach work, we need to address two main challenges. The first
challenge is where to steer the execution of a program to increase the chances of
finding a vulnerability. Whitebox fuzzers ‘blindly’ try to execute as much of the
program as possible, in the hope of hitting a bug eventually. Instead, DOWSER
uses information about the target program to identify code that is most likely to be
vulnerable to a buffer overflow.

For instance, buffer overflows occur (mostly) in code that accesses an array in
a loop. Thus, we look for such code and ignore most of the remaining instructions
in the program. Furthermore, DOWSER performs static analysis of the program to
rank such accesses. We will evaluate different ranking functions, but the best one
so far ranks the array accesses according to complexity. The intuition is that code
with convoluted pointer arithmetic and/or complex control flow is more prone to
memory errors than straightforward array accesses. Moreover, by focusing on such
code, DOWSER prioritizes bugs that are complicated—typically, the kind of vulner-
abilities that static analysis or random fuzzing cannot find. The aim is to reduce the
time wasted on shallow bugs that could also have been found using existing meth-
ods. Still, other rankings are possible also, and DOWSER is entirely agnostic to the
ranking function used.

The second challenge we address is how to steer the execution of a program to
these “interesting” code areas. As a baseline, we use concolic execution [134]: a
combination of concrete and symbolic execution, where the concrete (fixed) input
starts off the symbolic execution. In DOWSER, we enhance concolic execution with
two optimizations.

First, we propose a new path selection algorithm. As we saw earlier, traditional
symbolic execution aims at code coverage—maximizing the fraction of individual
branches executed [21; 53]. In contrast, we aim for pointer value coverage of se-
lected code fragments. When DOWSER examines an interesting pointer dereference,
it steers the symbolic execution along branches that are likely to alter the value of
the pointer.

Second, we reduce the amount of symbolic input as much as we can. Specifically,
DOWSER uses dynamic taint analysis to determine which input bytes influence the

o
.
]
2
o
©
e
®)

14 CHAPTER 2. DOWSER

pointers used for array accesses. Later, it treats only these inputs as symbolic. While
taint analysis itself is not new, we introduce novel optimizations to arrive at a set of
symbolic inputs that is as accurate as possible (with neither too few, nor too many
symbolic bytes).

In summary, DOWSER is a new fuzzer targeted at vendors who want to test their
code for buffer overflows and underflows. We implemented the analyses of DOWSER
as LLVM [81] passes, while the symbolic execution step employs S2E [28]. Finally,
DOWSER is a practical solution. Rather than aiming for all possible security bugs,
it specifically targets the class of buffer overflows (one of the most, if not the most,
important class of attack vectors for code injection). So far, DOWSER found several
real bugs in complex programs like nginx, ffmpeg, and inspircd. Most of them are
extremely difficult to find with existing symbolic execution tools.

Assumptions and outline Throughout this paper, we assume that we have a test
suite that allows us to reach the array accesses. Instructions that we cannot reach,
we cannot test. In the remainder, we start with a big picture and the running ex-
ample (Section 2.2). Then, we discuss the three main components of DOWSER in
turn: the selection of interesting code fragments (Section 2.3), the use of dynamic
taint analysis to determine which inputs influence the candidate instructions (Sec-
tion 2.4), and our approach to nudge the program to trigger a bug during symbolic
execution (Section 2.5). We evaluate the system in Section 3.10, discuss the related
projects in Section 3.13. We conclude in Section 5.5.

2.2 Big picture

The main goal of DOWSER is to manipulate the pointers that instructions use to
access an array in a loop, in the hope of forcing a buffer overrun or underrun.

2.2.1 Running example

Throughout the paper, we will use the function in Figure 2.1 to illustrate how dows-
ing works. The example is a simplified version of a buffer underrun vulnerability in
the nginx-0.6.32 web server [2]. A specially crafted input tricks the program into
setting the u pointer to a location outside its buffer boundaries. When this pointer is
later used to access memory, it allows attackers to overwrite a function pointer, and
execute arbitrary programs on the system.

Figure 2.1 presents only an excerpt from the original function, which in reality
spans approximately 400 lines of C code. It contains a number of additional options
in the switch statement, and a few nested conditional if statements. This complex-
ity severely impedes detecting the bug by both static analysis tools and symbolic
execution. engines.. For instance, when we steered S2E [28] all the way down to
the vulnerable function, and made solely the seven byte long uri path of the HTTP

2.2. BIG PICTURE

15

A buffer underrun vulnerability in nginx

{3} int ngx_http_parse_complex_uri(ng hitp_request &1

3] state sw_usual;

4] char* p = r->uri_start; // user input

[5] UTchar+ b = roourl. data; // store normalized uri here
[t;] u_char ch = *p++; I/ the current character

18] e (p <= E >ur| _end) {
] sthch (state) {~
1 case sw usual:
[11 if (ch =="/")
state = sw_slash; *u++ = ch;
else if /* many more options here */
= *p++; break;

ot;
e/se if /< many more options here 4/
= *p++; break;
case sw_dot:
if(ch ==
state = sw_dot_dot; *u++ =
else if /* many more options hers %
ch =*p++; ;
case sw do(’ dot:
if (ch '
sate sw_slash; u -=4;
while (*(u=1) 1= '/"

1) u
e/se if /< many more optrons here */
= *p++; break;

e I N M S T SN S

Nginx is a web server—in terms of market share across the
million busiest sites, it ranks third in the world. At the time
of writing, it hosts about 22 million domains worldwide. Ver-
sions prior to 0.6.38 had a particularly nasty vulnerability [2].
When nginx receives an HTTP request, the parsing function
nginx_http_parse_complex_uri, first normalizes a uri path
in p=r->uri_start (line 4), storing the result in a heap buffer
pointed to by u=r->uri.data (line 5). The while-switch im-
plements a state machine that consumes the input one char-
acter at a time, and transform it into a canonical form in u.

The source of the vulnerability is in the sw_dot_dot
state. When provided with a carefully crafted path, nginx
wrongly sets the beginning of u to a location somewhere be-
low r->uri.data. Suppose the uriis "//../foo". When p
reaches "/foo", u points to (r->uri.data+4), and state is
sw_dot_dot (line 30). The routine now decreases u by 4 (line
32), so that it points to r->uri.data. As long as the mem-
ory below r->uri.data does not contain the character "/",
u is further decreased (line 33), even though it crosses buffer
boundaries. Finally, the user provided input ("foo") is copied
to the location pointed to by u.

In this case, the overwritten buffer contains a pointer to a
function, which will be eventually called by nginx. Thus the
vulnerability allows attackers to modify a function pointer,
and execute an arbitrary program on the system.

It is a complex bug that is hard to find with existing so-
lutions. The many conditional statements that depend on
symbolic input are problematic for symbolic execution, while
input-dependent indirect jumps are also a bad match for static
analysis.

Figure 2.1: A simplified version of a buffer underrun vulnerability in nginx.

message symbolic, it took over 60 minutes to track down the problematic scenario.
A more scalable solution is necessary in practice. Without these hints, S2E did not
find the bug at all during an eight hour long execution.? In contrast, DOWSER finds

it in less than 5 minutes.

The primary reason for the high cost of the analysis in S2E is the large number of
conditional branches which depend on (symbolic) input. For each of the branches,
symbolic execution first checks whether either the condition or its negation is sat-
isfiable. When both branches are feasible, the default behavior is to examine both.
This procedure results in an exponentially growing number of paths.

2 All measurements in the paper, use the same environment as in Section 3.10.

o
.
]
2
o
©
e
®)

16 CHAPTER 2. DOWSER

static analysis and ranks them using taint analysis, Dowser symbolic execution explores paths to the AddressSanitizer (or some other
(5 determines which inputs influence interesting accesses (making only the | buffer overflow detector) is used tc
array accesses (2) the most interesting accesses (3) relevant fields symbolic) with a preference } (4

in loops; for paths that may lead to overflows

finds interesting

detect the actual overflows

' an{2i-4] = x ' anf2id) = 1
whie({ @ 7 : R "
arfi++] = x @A ! : : Alay
I ' . RS
arri[2*i-4] = 0; v 3 : ~ : N :
} 1 P 1 1
: : "
' , :
1 Il |
: e e s R T e .
: : H
, : .
: |
: :

Figure 2.2: DOWSER- high-level overview.

This real-world example shows the need for (1) focusing the powerful yet expen-
sive symbolic execution on the most interesting cases, (2) making informed branch
choices, and (3) minimizing the amount of symbolic data.

2.2.2 High-level overview

Figure 2.2 illustrates the overall DOWSER architecture.

First, it performs a data flow analysis of the target program, and ranks all instruc-
tions that access buffers in loops (). While we can rank them in different ways and
DOWSER is agnostic as to the ranking function we use, our experience so far is that
an estimation of complexity works best. Specifically, we rank calculations and con-
ditions that are more complex higher than simple ones. In Figure 2.1, u is involved
in three different operations, i.e., u++, u-, and u-=4, in multiple instructions inside a
loop. As we shall see, these intricate computations place the dereferences of u in the
top 3% of the most complex pointer accesses across nginx.

In the second step (2), DOWSER repeatedly picks high-ranking accesses, and se-
lects test inputs which exercise them. Then, it uses dynamic taint analysis to deter-
mine which input bytes influence pointers dereferenced in the candidate instructions.
The idea is that, given the format of the input, DOWSER fuzzes (i.e., treats as sym-
bolic), only those fields that affect the potentially vulnerable memory accesses, and
keeps the remaining ones unchanged. In Figure 2.1, we learn that it is sufficient to
treat the uri path in the HTTP request as symbolic. Indeed, the computations inside
the vulnerable function are independent of the remaining part of the input message.

Next (3), for each candidate instruction and the input bytes involved in calculating
the array pointer, DOWSER uses symbolic execution to try to nudge the program
toward overflowing the buffer. Specifically, we execute symbolically the loop that
contains the candidate instructions (and thus should be tested for buffer overflows)—
treating only the relevant bytes as symbolic. As we shall see, a new path selection
algorithm helps to guide execution to a possible overflow quickly.

Finally, we detect any overflow that may occur. Just like in whitebox fuzzers, we
can use any technique to do so (e.g., Purify, Valgrind [96], or BinArmor [120]). In
our.work, we use. Google’s. AddressSanitizer [115] (). It instruments the protected
program to ensure that memory access instructions never read or write so called,

2.3. DOWSING FOR CANDIDATE INSTRUCTIONS 17

“poisoned” red zones. Red zones are small regions of memory inserted inbetween
any two stack, heap or global objects. Since they should never be addressed by
the program, an access to them indicates an illegal behavior. This policy detects
sequential buffer over- and underflows, and some of the more sophisticated pointer
corruption bugs. This technique is beneficial when searching for new bugs since it
will also trigger on silent failures, not just application crashes. In the case of nginx,
AddressSanitizer detects the underflow when the u pointer reads memory outside its
buffer boundaries (line 33).

We explain step (1) (static analysis) in Section 2.3, step (2) (taint analysis) in
Section 2.4, and step (3) (guided execution) in Section 2.5.

2.3 Dowsing for candidate instructions

Previous research has shown that software complexity metrics collected from soft-
ware artifacts are helpful in finding vulnerable code components [48; 142; 117; 98].
However, even though complexity metrics serve as useful indicators, they also suf-
fer from low precision or recall values. Moreover, most of the current approaches
operate at the granularity of modules or files, which is too coarse for the directed
symbolic execution in DOWSER.

As observed by Zimmermann et al. [142], we need metrics that exploit the unique
characteristics of vulnerabilities, e.g., buffer overflows or integer overruns. In prin-
ciple, DOWSER can work with any metric capable of ranking groups of instructions
that access buffers in a loop. So, the question is how to design a good metric for
complexity that satisfies this criterion? In the remainder of this section, we intro-
duce one such metric: a heuristics-based approach that we specifically designed for
the detection of potential buffer overflow vulnerabilities.

We leverage a primary pragmatic reason behind complex buffer overflows: con-
voluted pointer computations are hard to follow by a programmer. Thus, we focus
on ‘complex’ array accesses realized inside loops. Further, we limit the analysis
to pointers which evolve together with loop induction variables, i.e., are repeatedly
updated to access (various) elements of an array.

Using this metric, DOWSER ranks buffer accesses by evaluating the complex-
ity of data- and control-flows involved with the array index (pointer) calculations.
For each loop in the program, it first statically determines (1) the set of all instruc-
tions involved in modifying an array pointer (we will call this a pointer’s analysis
group), and (2) the conditions that guard this analysis group, e.g., the condition of
an if or while statement containing the array index calculations. Next, it labels all
such sets with scores reflecting their. complexity. We explain these steps in detail in
Sections 2.3.1, 2.3.2, and 2.3.3.

o
.
]
2
o
©
e
®)

18 CHAPTER 2. DOWSER

5:ul=r—uri.data;

8:u2=P(ul,ulo)

12:u3=u2++; .. 26:ub6=u2++; 32:u7=u2-4;

33:u8=P(u7,u9)

33:u9=u8--;
2P
.|. 37:ul0=d(u3,..,u6,u9)

different +
constants

Figure 2.3: Data-flow graph and analysis group associated with the pointer u from Figure 2.1.
For the sake of clarity, the figure presents pointer arithmetic instructions in pseudo code. The PHI
nodes represent locations where data is merged from different control-flows. The numbers in the
boxes represent points assigned by DOWSER.

2.3.1 Building analysis groups

Suppose a pointer p is involved in an “interesting” array access instruction acc, in
a loop. The analysis group associated with acc,, AG(acc;), collects all instructions
that influence the value of the dereferenced pointer during the execution of the loop.

To determine AG(acc,), we compute an intraprocedural data flow graph repre-
senting operations in the loop that compute the value of p dereferenced in acc,.
Then, we check if the graph contains cycles. A cycle indicates that the value of p in
a previous loop iteration affects its value in the current one, so p depends on the loop
induction variable.

As mentioned before, this part of our work is built on top of the LLVM [81]
compiler infrastructure. The static single assignment (SSA) form provided by LLVM
translates directly to data flow graphs. Figure 2.3 shows an example. Observe that,
since all dereferences of pointer u share their data flow graph, they also form a single
analysis group. Thus, when DOWSER later tries to find an illegal array access within
this analysis group, it tests all the dereferences at the same time—there is no need to
consider them separately.

2.3.2 Conditions guarding analysis groups

It may happen that the data flow associated with an array pointer is simple, but the
value of the pointer is hard to follow due to some complex control changes. For this
reason, DOWSER ranks also control flows: the conditions that influence an analysis
group.

Say that an instruction manipulating the array pointer p is guarded by a condition

2.4. USING TAINTING TO FIND INPUTS THAT MATTER 19

on a variable var, e.g., if (var<10) {*p++=0;}. If the value of var is difficult to keep
track of, so is the value of p. To assess the complexity of var, DOWSER analyzes its
data flow, and determines the analysis group, AG(var) (as discussed in Section 2.3.1).
Moreover, we recursively analyze the analysis groups of other variables influencing
var and p inside the loop. Thus, we obtain a number of analysis groups which we
rank in the next step (Section 2.3.3).

2.3.3 Scoring array accesses

For each array access realized in a loop, DOWSER assesses the complexity of the
analysis groups constructed in Sections 2.3.1 and 2.3.2. For each analysis group,
it considers all instructions, and assigns them points. The more points an AG cu-
mulatively scores, the more complex it is. The overall rank of the array access is
determined by the maximum of the scores. Intuitively, it reflects the most complex
component.

The scoring algorithm should provide roughly the same results for semantically
identical code. For this reason, we enforce the optimizations present in the LLVM
compiler (e.g., to eliminate common subexpressions). This way, we minimize the
differences in (the amount of) instructions arising from the compiler options. More-
over, we analyzed the LLVM code generation strategies, and defined a powerful set
of equivalence rules, which minimize the variation in the scores assigned to syntac-
tically different but semantically equivalent code. We highlight them below.

Table 2.1 introduces all types of instructions, and discusses their impact on the
final score. In principle, all common instructions involved in array index calculations
are of the order of 10 points, except for the two instructions that we consider risky:
pointer casts and functions that return non-pointer values used in pointer calculation.

The absolute penalty for each type of instruction is not very important. How-
ever, we ensure that the points reflect the difference in complexity between various
code fragments, instead of giving all array accesses the same score. That is, instruc-
tions that complicate the array index contribute to the score, and instructions that
complicate the index a lot also score very high, relative to other instructions. In
Section 3.10, we compare our complexity ranking to alternatives.

2.4 Using tainting to find inputs that matter

Once DOWSER has ranked array accesses in loops in order of complexity, we exam-
ine them in turn. Typically, only a small segment of the input affects the execution of
a particular analysis group, so we want to search for a bug by modifying solely this
part of the input, while keeping the rest constant (refer to Section 2.5). In the current
section, we explain how DOWSER identifies the link between the components of the
program.input and the different analysis groups. Observe that this result also benefits
other bug finding tools based on fuzzing, not just DOWSER and concolic execution.

o
.
]
2
o
©
e
®)

CHAPTER 2. DOWSER

20

‘uonoadsur 9500 € ypiom axe Koy ‘(aroqe paysy)) suonendiuew 1eyutod prepue)s ay)

001 0) JuaTeAINb? jou are Jey) suonjerado 9)edIpUT USYJO SUONONISUT SUTISED I} IUTS suonjerado 3sed I9juT0q

GIloJ ("ppe 99S) *(5)1951J0 pue aseq e woij juiod e soyndwod jey) uononnsur WATT UV I3dJueTH399H

‘() 91098 [[e - Aem dwes oy ul siyutod azouras [e yea1) dooy ayj ap1sino

0 M 'SI0JBO0[[e ATowow Sulsn Jo 199[qo ue Jo 1ourod aseq oY) SUTAILIAIL $9JOUP I] pare[noped 1ojurod B peo]

suonendiuewt 1uIog

0 ‘suoneindwod Jo Kjrxerdurod ay) 03 ppe Jou seop eyep (19jurod J0 Ie[edss) SUTAOIN | SUOTIONI)SUT JUSUWISAOW BIB(]

‘uonerado sty azijeuad A[1aeay om ‘soyeisiu | sanjea 1ajuiod-uou Juruiniox

00S 0) peo[AT1ses JyStur asn 31 woxy 1jutod e Jo uoneindwiods oY) Suridnooep sourg SUOTJOUNJ PAUT[UT-UON

-ouoid JOII2 2J0W pUE JNOQE UOSEAI 0 JNOYJIP I8 A3y sny, "sanfeA 1oy} 101paid | doof ay) 9pIsino paurwrolop

0¢ jouued 19[1dwod ay) ‘sjueisuod isnl are Loy doof ay) Jo 1xu0d Y} ur ySnoy], Son[eA [eoIIoUINN

"PIoY & JO SSAIPpE AU} JOU pue ‘AvIIe Ue JO Xopul 3y} 9yndwiod 0} pasn sjuBISuod S2INONIS JO sply

0 IOPISUOD ATUO 9A\ "A[IO9II00 SQINIONIS 0} SASSAVOE J[puey SISIAUIOD Jey) SWINSSE AN $S900® 0] PAsn SJUBISUOD)
onyea 1od "on[eA dwres Yy Aq sasearour sAeme jey) 1ajurod e Jo yoen dooy o) 1a1se9 SI]

o1 "MO[[0J 0} pIey anfea s)T axyew 1jutod e AJrpour 03 pasn sjueIsuod afdnny sanyeA JULISUOD JUIIJI(T

-a10w WY} 9zifeuad am ‘sny], ‘qns I0 ppe JIOX 10 ‘YJIYS ‘UOISIAIP 39

o1 pIepue)s ayj uey) suone[noed rjurod Xo[duod 9IOUI QAJOAUT SUOTIONI)SUT ASAYJ, | “TISUT ONAWYILIE XOpul IoyI0)
‘uonexa)r dooj 1xau ayy 0] passed JoU ST YITYm AN[eA B SAYIPOW I JT T SAI0DS

UOT)ONISUT UY *S}19sfJo uo suonerado 0} Juarearnba are siojurod uo suonjerado ‘sny], | UonoeIQNS PUR UOHIPPE <1

GlIoJ "QuIes Q) $9I0JS ‘Xopul Uk Aq 19jut0d B S9SBAIOIP JO SASLIOUT Jey) ‘I1JWeTHA9D | “ISUI ONQWYILIE Xopul dIseq

suonendiuew Xapul Ae1Iy

sjurog so[n1 aoudreambg ereuoney suonoNISuf

Overview of the instructions involved in pointer arithmetic operations, and their penalty

Table 2.1

points.

2.4. USING TAINTING TO FIND INPUTS THAT MATTER 21

We focus our discussion on an analysis group AG(acc,) associated with an array
pointer dereference acc,. We assume that we can obtain a test input I that exercises
the potentially vulnerable analysis group. While this may not always be true, we
believe it is a reasonable assumption. Most vendors have test suites to test their
software and they often contain at least one input which exercises each complex
loop.

2.4.1 Baseline: dynamic taint analysis

As a basic approach, DOWSER performs dynamic taint analysis (DTA) [97] on the
input I (tainting each input byte with a unique color, and propagating the colors on
data movement and arithmetic operations). Then, it logs all colors and input bytes
involved in the instructions in AG(accp). Given the format of the input, DOWSER
maps these bytes to individual fields. In Figure 2.1, DOWSER finds out that it is
sufficient to treat uri as symbolic.

The problem with DTA, as sketched above, is that it misses implicit flows (also
called control dependencies) entirely [45; 77]. Such flows have no direct assignment
of a tainted value to a variable—which would be propagated by DTA. Instead, the
value of a variable is completely determined by the value of a tainted variable in a
condition. In Figure 2.1, even though the value of u in line 12 is dependent on the
tainted character ch in line 11, the taint does not flow directly to u, so DTA would
not report the dependency. Implicit flows are notoriously hard to track [118; 24],
but ignoring them completely reduces our accuracy. DOWSER therefore employs a
solution that builds on the work by Bao et al. [16], but with a novel optimization to
increase the accuracy of the analysis (Section 2.4.2).

Like Bao et al. [16], DOWSER implements strict control dependencies. Intu-
itively, we propagate colors only on the most informative (or, information preserv-
ing) dependencies. Specifically, we require a direct comparison between a tainted
variable and a compile time constant. For example, in Figure 2.1, we propagate the
color of ch in line 11 to the variables state and u in line 12. However, we would
keep state and u untainted if the condition in line 11 for instance had been either
"if (ch!=’/’)" or "if (ch<’/’)". As implicit flows are not the focus of this paper
we refer interested readers to [16] for details.

2.4.2 Field shifting to weed out false dependencies

Improving on the handling of strict control dependencies by Bao et al. [16], de-
scribed above, DOWSER adds a novel technique to prevent overtainting due to false
dependencies. The problems arise when the order of fields in an input format is not
fixed, e.g., as in HTTP, SMTP (and the commandline for most programs). The ap-
proach from [16]. may falsely suggest that a field is dependent on all fields that were
extracted so far.

o
.
]
2
o
©
e
®)

22 CHAPTER 2. DOWSER

Input: Colors in handlers: Excluded
A_hand() B_hand() C_hand() D_hand() E_hand() | colors:
[TABCDEM | A | [AB |[ABC |[ABCD |[ABCDE]|| |
[IDABCET]| [AD |IABD _|[ABCD |[D | [ABCDE] | [E
[BDACE[]|[ABD |[B |[ABCD ||BD |[ABCDE] | [CE |
ACE

Figure 2.4: The figure shows how DOWSER shuffles an input to determine which fields really
influence an analysis group. Suppose a parser extracts fields of the input one by one, and the
analysis group depends on the fields B and D (with colors B and D, respectively). Colors in
handlers show on which fields the subsequent handlers are strictly dependent [16], and the
shaded rectangle indicates the colors propagated to the analysis group. Excluded colors are left
out of our analysis.

For instance, 1ighttpd reads new header fields in a loop and compares them to
various options, roughly as follows:

while () {
if (cmp(field, "Content") == 0)

else if (cmp(field, "Range") == 0)

else exit (-1);
field = extract_new_header_field();

}

As the parser tests for equivalence, the implicit flow will propagate from one field
to the next one, even if there is no real dependency at all! Eventually, the last field
appears to depend on the whole header.

DOWSER determines which options really matter for the instructions in an anal-
ysis group by shifting the fields whose order is not fixed. Refer to Figure 2.4, and
suppose we have run the program with options A, B, C, D, and E, and our analysis
group really depends on B and D. Once the message gets processed, we see that the
AG does not depend on E, so E can be excluded from further analysis. Since the
last observed color, D, has a direct influence on the AG, it is a true dependence. By
performing a circular shift and re-trying with the order D, A, B, C, E, DOWSER finds
only the colors corresponding to A, B, D. Thus, we can leave C out of our analysis.
After the next circular shift, DOWSER reduces the colors to B and D only.

The optimization is based on two observations: (1) the last field propagated to
the AG has a direct influence on the AG, so it needs to be kept, (2) all fields beyond
this one are guaranteed to have no impact on the AG. By performing circular shifts,
and running DTA on the updated input, DOWSER drops the undue dependencies.

Even though this optimization requires some minimal knowledge of the input,
we.do.not need full understanding of the input grammar, like the contents or effects
of fields. It is sufficient to identify the fields whose order is not fixed. Fortunately,

2.5. EXPLORING CANDIDATE INSTRUCTIONS 23

such information is available for many applications—especially when vendors test
their own code.

2.5 Exploring candidate instructions

Once we have learnt which part of the program input influences the analysis group
AG(accp), we fuzz this part, and we try to nudge the program toward using the pointer
p in an illegal way. More technically, we treat the interesting component of the
input as symbolic, the remaining part as fixed (concrete), and we execute the loop
associated with AG(acc;) symbolically.

However, since in principle the cost of a complete loop traversal is exponential,
loops present one of the hardest problems for symbolic execution [51]. Therefore,
when analyzing a loop, we try to select those paths that are most promising in our
context. Specifically, DOWSER prioritizes paths that show a potential for knotty
pointer arithmetic. As we show in Section 3.10, our technique significantly opti-
mizes the search for an overflow.

DOWSER’s loop exploration procedure has two main phases: learning, and bug
finding. In the learning phase, DOWSER assigns each branch in the loop a weight ap-
proximating the probability that a path following this direction contains new pointer
dereferences. The weights are based on statistics on the variety of pointer values
observed during an execution of a short symbolic input.

Next, in the bug finding phase, DOWSER uses the weights determined in the
first step to filter our uninteresting parts of the loop, and prioritize the important
paths. Whenever the weight associated with a certain branch is 0, DOWSER does
not even try to explore it further. In the vulnerable nginx parsing loop from which
Figure 2.1 shows an excerpt, only 19 out of 60 branches scored a non-zero value,
so were considered for the execution. In this phase, the symbolic input represents
a real-world scenario, so it is relatively long. Therefore, it would be prohibitively
expensive to be analyzed using a popular symbolic execution tool.

In Section 2.5.1, we briefly review the general concept of concolic execution,
and then we discuss the two phases in Sections 2.5.2 and 2.5.3, respectively.

2.5.1 Baseline: concrete + symbolic execution

Like DART and SAGE [52; 53], DOWSER generates new test inputs by combin-
ing concrete and symbolic execution. This technique is known as concolic exe-
cution [114]. It runs the program on a concrete input, while gathering symbolic
constraints from conditional statements encountered along the way. To test alter-
native paths, it systematically negates the collected constraints, and checks whether
the new set is satisfiable. If so, it yields a new input. To bootstrap the procedure,
DOWSER takes a test input which exercises the analysis group AG(acc;).

As mentioned. already,.a challenge in applying this approach is how to select the
paths to explore first. The classic solution is to use depth first exploration of the paths

o
.
]
2
o
©
e
®)

24 CHAPTER 2. DOWSER

by backtracking [78]. However, since doing so results in an exponentially growing
number of paths to be tested, the research community has proposed various heuristics
to steer the execution toward unexplored regions. We discuss these techniques in
Section 3.13.

2.5.2 Phase 1: learning

The aim of the learning phase is to rate the true and false directions of all condi-
tional branches that depend on the symbolic input in the loop L. For each branch, we
evaluate the likelihood that a particular outcome will lead to unique pointer deref-
erences (i.e., dereferences that we do not expect to find in the alternative outcome).
Thus, we answer the question of how much we expect to gain when we follow this
path, rather than the alternative. We encode this information into weights.

Specifically, the weights represent the likelihood of unique access patterns. An
access pattern of the pointer p is the sequence of all values of p dereferenced during
the execution of the loop. In Figure 2.1, when we denote the initial value of u by
uo, then the input "//. . /" triggers the following access pattern of the pointer u: (uo,
w+l, uo+2, u-2,...).

To compute the weights, we learn about the effects of individual branches. In
principle, each of them may (a) directly affect the value of a pointer, (b) be a pre-
condition for another important branch, or (c) be irrelevant from the computation’s
standpoint. To distinguish between these cases, DOWSER analyzes all possible ex-
ecutions of a short symbolic input. By comparing the sets of p’s access patterns
observed for both outcomes of a branch, it discovers which branches do not influ-
ence the diversity of pointer dereferences (i.e., are irrelevant).

Symbolic input In Section 2.4, we identified which part of the test input I we need to
make symbolic. We denote this by Is. In the learning phase, DOWSER executes the
loop L exhaustively. For performance reasons, we therefore further limit the amount
of symbolic data and make only a short fragment of Ig symbolic. For instance,
for Figure 2.1, the learning phase makes only the first 4 bytes of uri symbolic (not
enough to trigger the bug), while scaling up to 50 symbolic bytes in the bug finding
phase.

Algorithm DOWSER exhaustively executes L on a short symbolic input, and records
how the decisions taken at conditional branch statements influence pointer derefer-
ence instructions. For each branch b along the execution path, we retain the access
pattern of p realized during this execution, AP (p). We informally interpret it as “if
you choose the true (respectively, false) direction of the branch b, expect access
pattern AP(p) (respectively, AP’ (p))”. This procedure results in two sets of access
patterns for each branch statement, for the taken and non-taken branch, respectively.
The final weight of each direction is the fraction of the access patterns that were
unique for the direction.in question,.i.e., were not observed when the opposite one
was taken.

2.5. EXPLORING CANDIDATE INSTRUCTIONS 25

The above description explains the intuition behind the learning mechanism, but
the full algorithm is more complicated. The problem is that a conditional branch b
might be exercised multiple times in an execution path, and it is possible that all the
instances of b influence the access pattern observed.

Intuitively, to allow for it, we do not associate access patterns with just a single
decision taken on b (true or false). Rather, each time b is exercised, we also retain
which directions were previously chosen for b. Thus, we still collect “expected”
access patterns if the true (respectively, false) direction of b is followed, but we
augment them with a precondition. This way, when we compare the true and false
sets to determine the weights for b, we base the scores on a deeper understanding of
how an access pattern was reached.

Discussion It is important for our algorithm to avoid false negatives: we should not
incorrectly flag a branch as irrelevant—it would preclude it from being explored in
the bug finding phase. Say that instr is an instruction that dereferences the pointer
p. To learn that a branch directly influences instr, it suffices to execute it. Similarly,
since branches retain full access patterns of p, the information about instr being
executed is also “propagated” to all its preconditions. Thus, to completely avoid
false negatives, the algorithm would require full coverage of the instructions in an
analysis group. We stress that we need to exercise all instructions, and not all paths
in a loop. As observed by [21], exhaustive executions of even short symbolic inputs
provide excellent instruction coverage in practice.

While false positives are undesirable as well, they only cause DOWSER to exe-
cute more paths in the second phase than absolutely necessary. Due to the limited
path coverage, there are corner cases, when false positives can happen. Even so, in
nginx, only 19 out of 60 branches scored a non-zero value, which let us execute the
complex loop with a 50-byte-long symbolic input.

2.5.3 Phase 2: hunting bugs

In this step, DOWSER executes symbolically a real-world sized input in the hope of
finding a value that triggers a bug. DOWSER uses the feedback from the learning
phase (Section 2.5.2) to steer its symbolic execution toward new and interesting
pointer dereferences. The goal of our heuristic is to avoid execution paths that do
not bring any new pointer manipulation instructions. Thus, DOWSER shifts the target
of symbolic execution from traditional code coverage to pointer value coverage.

DOWSER'’s strategy is explicitly dictated by the weights. As a baseline, the ex-
ecution follows a depth-first exploration, and when DOWSER is about to select the
direction of a branch b that depends on the symbolic input, it adheres to the following
rules:

* If both the true and false directions of b have weight 0, we do not expect b to
influence the variety. of access.patterns. Thus, DOWSER chooses the direction
randomly, and does not intend to examine the other direction.

o
.
]
2
o
©
e
®)

26 CHAPTER 2. DOWSER

* If only one direction has a non-zero weight, we expect to observe unique ac-
cess patterns only when the execution paths follows this direction, and DOWSER
favors it.

* If both of b’s directions have non-zero weights, both the true and false op-
tions may bring unique access patterns. DOWSER examines both directions,
and schedules them in order of their weights.

Intuitively, DOWSER’s symbolic execution tries to select paths that are more
likely to lead to overflows.

Guided fuzzing This concludes our description of DOWSER’s architecture. To sum-
marize, DOWSER helps fuzzing by: (1) finding “interesting” array accesses, (2) iden-
tifying the inputs that influence the accesses, and (3) fuzzing intelligently to cover
the array. Moreover, the targeted selection procedure based on pointer value cov-
erage and the small number of symbolic input values allow DOWSER to find bugs
quickly and scale to larger applications. In addition, the ranking of array accesses
permits us to zoom in on more complicated array accesses.

2.6 Evaluation

In this section, we first zoom in on the running example of nginx from Figure 2.1
to evaluate individual components of the system in detail (Section 2.6.1). In Sec-
tion 2.6.2, we consider seven real-world applications. Based on their vulnerabilities,
we evaluate our dowsing mechanism. Finally, we present an overview of the attacks
detected by DOWSER.

Since DOWSER uses a ‘spot-check’ rather than ‘code coverage’ approach to bug
detection, it must analyze each complex analysis group separately, starting with the
highest ranking one, followed by the second one, and so on. Each of them runs until
it finds a bug or gets terminated. The question is when we should terminate a sym-
bolic execution run. Since symbolic execution of a single loop is highly optimized in
DOWSER, we found each bug in less than 11 minutes, so we execute each symbolic
run for a maximum of 15 minutes.

Our test platform is a Linux 3.1 system with an Intel(R) Core(TM) i7 CPU
clocked at 2.7GHz with 4096KB L2 cache. The system has 8GB of memory. For
our experiments we used an OpenSUSE 12.1 install. We ran each test multiple times
and present the median.

2.6.1 Case study: Nginx

In_this_section, we evaluate each of the main steps of our fuzzer by looking at our
case study of nginx in detail.

2.6. EVALUATION 27

?200 } — threshold (26 points)

O I — - I - . HH - - I — H

T T T
0 20 40 60 80 100 120 140
Analysis groups

Figure 2.5: Scores of the analysis groups in nginx.

Dowsing for candidate instructions

We measure how well DOWSER highlights potentially faulty code and filters out the
uninteresting fragments.

Our first question is whether we can filter out all the simple loops and focus on
the more interesting ones. This turns out to be simple. Given the complexity scoring
function from Section 2.3, we find that across all applications all analysis groups
with a score less than 26 use just a single constant and at most two instructions
modifying the offset of an array. Thus, in the remainder of our evaluation, we set
our cut-off threshold to 26 points.

As shown in Table 2.2, nginx has 517 outermost loops, and only 140 analysis
groups that access arrays. Thus, we throw out over 70% of the loops immediately>.
Figure 2.5 presents the sorted weights of all the analysis groups in nginx. The dis-
tribution shows a quick drop after a few highly complex analysis groups. The long
tail represents the numerous simple loops omnipresent in any code. 55.7% of the
analysis groups score too low to be of interest. This means that DOWSER needs to
examine only the remaining 44.3%, i.e., 62 out of 140 analysis groups, or at most
12% of all loops. Out of these, the buffer overflow in Figure 2.1 ranks 4th.

Taint analysis in context of hunting for bugs

In Section 2.4 we mentioned that ‘traditional’ dynamic taint analysis misses implicit
flows, i.e., flows that have no direct assignment of a tainted value to a variable. The
problem turns out to be particularly serious for nginx. It receives input in text format,

SInprincipleyifialoopiaccessesimultipleratrays, it also contains multiple access groups. Thus, these 140
analysis groups are located in fewer than 140 loops.

o
.
]
2
o
©
e
®)

28 CHAPTER 2. DOWSER

and transforms it to extract numerical values or various flags. As such code employs
conditional statements, DTA misses the dependencies between the input and analysis
groups.

Next, we evaluate the usefulness of field shifting. First, we implement the taint
propagation exactly as proposed by Bao et al. [16], without any further restrictions.
In that case, an index variable in the nginx parser becomes tainted, and we mark all
HTTP fields succeeding the uri field as tainted as well. As a result, we introduce
more symbolic data than necessary. Next, we apply field shifting (Section 2.4.2)
which effectively limits taint propagation to just the uri field. In general, the field
shifting optimization improves the accuracy of taint propagation in all applications
that take multiple input fields whose order does not matter. On the other hand, it will
not help if the order is fixed.

Importance of guiding symbolic execution

We now use the nginx example to assess the importance of guiding symbolic exe-
cution to a vulnerability condition. For nginx, the input message is a generic HTTP
request. Since it exercises the vulnerable loop for this analysis group, its uri starts
with "//". Taint analysis allows us to detect that only the uri field is important, so
we mark only this field as symbolic. As we shall see, without guidance, symbolic
execution does not scale beyond very short uri fields (5-6 byte long). In contrast,
DOWSER successfully executes 50-byte-long symbolic uris.

When S2E [28] executes a loop, it can follow one of the two search strategies:
depth-first search, or maximizing code coverage (as proposed in SAGE [53]). The
first one aims at complete path coverage, and the second at executing basic blocks
that were not seen before. However, none can be applied in practice to examine the
complex loop in nginx. The search is so costly that we measured the runtime for
only 5-6 byte long symbolic uri fields. The DFS strategy handled the 5-byte-long
input in 139 seconds, the 6-byte-long in 824 seconds. A 7-byte input requires more
than 1 hour to finish. Likewise, the code coverage strategy required 159, and 882
seconds, respectively. The code coverage heuristic does not speed up the search for
buffer overflows either, since besides executing specific instructions from the loop,
memory corruptions require a very particular execution context. Even if 100% code
coverage is reached, they may stay undetected.

As we explained in Section 2.5, the strategy employed by DOWSER does not aim
at full coverage. Instead, it actively searches for paths which involve new pointer
dereferences. The learning phase uses a 4-byte-long symbolic input to observe ac-
cess patterns in the loop. It follows a simple depth first search strategy. As the bug
clearly cannot be triggered with this input size, the search continues in the second,
hunting bugs, phase. The result of the learning phase disables 66% of the conditional
branches significantly reducing the exponentially of the subsequent symbolic execu-
tion.. Because of this heuristic, DOWSER easily scales up to 50 symbolic bytes and
finds the bug after just a few minutes. A 5-byte-long symbolic input is handled in

2.6. EVALUATION 29

20 seconds, 10 bytes in 42 seconds, 20 bytes in 63 seconds, 30 in 146 seconds, 40 in
174 seconds and 50 in 253 seconds. These numbers maintain an exponential growth
of 1.1 for each added character. Even though DOWSER still exhibits the exponential
behavior, the growth rate is fairly low. Even in the presence of 50 symbolic bytes,
DOWSER quickly finds the complex bug.

In practice, symbolic execution has problems dealing with real world applica-
tions and input sizes. The number of execution paths quickly overwhelms these
systems. Since triggering buffer overflows not only requires a vulnerable basic
block, but also a special context, traditional symbolic execution tools are ill suited.
DOWSER, instead, requires the application to be executed symbolically for only a
very short input, and then it deals with real-world input sizes instead of being lim-
ited to a few input bytes. Combined with the ability to extract the relevant parts of
the original input, this enables searching for bugs in applications like web servers
where input sizes were considered until now to be well beyond the scalability of
symbolic execution tools.

2.6.2 Overview

In this section, we consider several applications. First, we evaluate the dowsing
mechanism, and we show that it successfully highlights vulnerable code fragments.
Then, we summarize the memory corruptions detected by DOWSER. They come
from six real world applications of several tens of thousands LoC, including the
ffmpeg videoplayer of 300K LoC. The bug in ffmpeg, and one of the bugs in poppler
were not documented before.

Dowsing for candidate instructions

We now examine several aspects of the dowsing mechanism. First, we show that
there is a correlation between DOWSER scoring function and the existence of mem-
ory corruption vulnerabilities. Then, we discuss how our focus on complex loops
limits the search space, i.e., the amount of analysis groups to be tested. We start
with a description of our data set.

Data set To evaluate the effectiveness of DOWSER, we chose six real world pro-
grams: nginx, ffmpeg, inspircd, libexif, poppler, and snort. Additionally, we
consider the vulnerabilities in sendmail tested by Zitser et al. [143]. For these ap-
plications, we analyzed all buffer overflows reported in CVE [91] since 2009. For
ffmpeg, rather than include all possible codecs, we just picked the ones for which we
had test cases. Out of 27 CVE reports, we took 17 for the evaluation. The remaining
ten vulnerabilities are out of the scope of this paper — nine of them are related to an
erroneous.usage.of a correct function, e.g., strcpy, and one was not in a loop. In this
section, we consider the analysis groups from all the applications together, giving us

o
.
]
2
o
©
e
®)

30 CHAPTER 2. DOWSER

over 3000 samples, 17 of which are known to be vulnerable?.

When evaluating DOWSER scoring mechanism, we also compare it to a straight-
forward scoring function that treats all instructions uniformly. For each array access,
it considers exactly the same AGs as DOWSER. However, instead of the scoring al-
gorithm (Table 2.1), each instruction gets 10 points. We will refer to this metric as
count.

Correlation For both DOWSER and the count scoring functions, we computed the
correlation between the number of points assigned to an analysis group and the ex-
istence of a memory corruption vulnerability. We used the Spearman rank correla-
tion [4], since it is a reliable measure that is appropriate even when we do not know
the probability distribution of the variables, or when the association between the
variables is non-linear.

The positive correlation for DOWSER is statistically significant at p < 0.0001,
for count — at p < 0.005. The correlation for DOWSER is stronger.

Dowsing The Dowsing columns of Table 2.2 shows that our focus on complex loops
limits the search space from thousands of LoC to hundreds of loops, and finally
to a small number of “interesting” analysis groups. Observe that ffmpeg has more
analysis groups than loops. That is correct. If a loop accesses multiple arrays, it
contains multiple analysis groups.

By limiting the analysis to complex cases, we focus on a smaller fraction of all
AGs in the program, e.g., we consider 36.9% of all the analysis groups in inspircd,
and 34.5% in snort. ffmpeg, on the other hand, contains lots of complex loops that
decode videos, so we also observe many “complex” analysis groups.

In practice, symbolic execution, guided or not is expensive, and we can hardly
afford a thorough analysis of more than just a small fraction of the target AGs of
an application, say 20%-30%. For this reason, DOWSER uses a scoring function,
and tests the analysis groups in order of decreasing score. Specifically, DOWSER
looks at complexity. However, alternative heuristics are also possible. For instance,
one may count the instructions that influence array accesses in an AG. To evaluate
whether DOWSER’s heuristics are useful, we compare how many bugs we discover if
we examine increasing fractions of all AGs, in descending order of the score. So, we
determine how many of the bugs we find if we explore the top 10% of all AGs, how
many bugs we find when we explore the top 20%, and so on. In our evaluation, we
are comparing the following ranking functions: (1) DOWSER’s complexity metric,
(2) counting instructions as described above, and (3) random.

Figure 2.6 illustrates the results. The random ranking serves as a baseline—
clearly both count and DOWSER perform better. In order to detect all 17 bugs,
DOWSER has to analyze 92.2% of all the analysis groups. However, even with just
15% of the targets, we find almost 80% (13/17) of all the bugs. At that same frac-
tion of targets, count finds a little over 40% of the bugs (7/17). Overall, DOWSER

4Sifice the scoring functions are application’agnostic, it is sound to compare their results across applica-
tions.

2.6. EVALUATION 31

— Dowser
- - Count
100 -+ Random -

-
- -
-
- - .
- -

% of bugs detected

0 20 40 60 80 100
% of analysis groups analyzed

Figure 2.6: A comparison of random testing and two scoring functions: DOWSER and count. It
illustrates how many bugs we detect if we test a particular fraction of the analysis groups.

outperforms count beyond the 10% in the ranking. It also reaches the 100% bug
score earlier than the alternatives, although the difference is minimal.

The reason why DOWSER still requires 92% of the AGs to find all bugs, is that
some of the bugs were very simple. The “simplest” cases include a trivial buffer
overflow in poppler (worth 16 points), and two vulnerabilities in sendmail from
1999 (worth 20 points each). Since DOWSER is designed to prioritize complex array
accesses, these buffer overflows end up in the low scoring group. (The “simple”
analysis groups — with less than 26 points — start at 47.9%). Clearly, both heuristics
provide much better results than random sampling. Except for the tail, they find the
bugs significantly quicker, which proves their usefulness.

To summarize, we have shown that a testing strategy based on DOWSER scoring
function is effective. It lets us find vulnerabilities quicker than random testing or a
scoring function based on the length of an analysis group.

Symbolic execution

Table 2.2 presents attacks detected by DOWSER. The last section shows how long
it takes before symbolic execution detects the bug. Since the vanilla version of S2E
cannot handle these applications with the whole input marked as symbolic, we also
run the experiments with minimal symbolic inputs (“Magic S2E”). It represents the
best-case scenario when an all-knowing oracle tells the execution engine exactly
which bytes it should make symbolic. Finally, we present DOWSER’s execution
times.

We. run S2E for as_short a time. as possible, e.g., a single request/response in
nginx and transcoding a single frame in ffmpeg. Still, in most applications, vanilla

o
.
]
2
o
©
e
®)

32 CHAPTER 2. DOWSER

S2E fails to find bugs in a reasonable amount of time. inspircd iS an excep-
tion, but in this case we explicitly tested the vulnerable DNS resolver only. In the
case of libexif, we can see no difference between “Magic S2E” and DOWSER,
so DOWSER’s guidance did not influence the results. The reason is that our test
suite here was simple, and the execution paths reached the vulnerability condition
quickly. In contrast, more complex applications process the inputs intensively, mov-
ing symbolic execution away from the code of interest. In all these cases, DOWSER
finds bugs significantly faster. Even if we take the 15 minute tests of higher-ranking
analysis groups into account, DOWSER provides a considerable improvement over
existing systems.

2.7 Related work

DOWSER is a "guided’ fuzzer which draws on knowledge from multiple domains. In
this section, we place our system in the context of existing approaches. We start with
the scoring function and selection of code fragments. Next, we discuss traditional
fuzzing. We then review previous work on dynamic taint analysis in fuzzing, and
finally, discuss existing work on whitebox fuzzing and symbolic execution.

Software complexity metrics Many studies have shown that software complexity
metrics are positively correlated with defect density or security vulnerabilities [95;
117; 48; 142; 117; 98]. However, Nagappan et al. [95] argued that no single set of
metrics fits all projects, while Zimmermann et al. [142] emphasize a need for metrics
that exploit the unique characteristics of vulnerabilities, e.g., buffer overflows or in-
teger overruns. All these approaches consider the broad class of post-release defects
or security vulnerabilities, and consider a very generic set of measurements, e.g., the
number of basic blocks in a function’s control flow graph, the number of global or
local variables read or written, the maximum nesting level of if or while statements
and so on. DOWSER is very different in this respect, and to the best of our knowl-
edge, the first of its kind. We focus on a narrow group of security vulnerabilities,
i.e., buffer overflows, so our scoring function is tailored to reflect the complexity of
pointer manipulation instructions.

Traditional fuzzing Software fuzzing started in earnest in the 90s when Miller et
al. [90] described how they fed random inputs to (UNIX) utilities, and managed to
crash 25-33% of the target programs. More advanced fuzzers along the same lines,
like Spike [123], and SNOOZE [15], deliberately generate malformed inputs, while
later fuzzers that aim for deeper bugs are often based on the input grammar (e.g.,
Kaksonen [76] and [124]). DeMott [39] offers a survey of fuzz testing tools. As
observed by Godefroid et al. [53], traditional fuzzers are useful, but typically find
only shallow bugs.

Application of DTA to fuzzing BuzzFuzz [47] uses DTA to locate regions of seed
input files that influence values used at library calls. They specifically select library

2.7. RELATED WORK 33

calls, as they are often developed by different people than the author of the calling
program and often lack a perfect description of the API. Buzzfuzz does not use
symbolic execution at all, but uses DTA only to ensure that they preserve the right
input format. Unlike DOWSER, it ignores implicit flows completely, so it could
never find bugs such as the one in nginx (Figure 2.1). In addition, DOWSER is more
selective in the application of DTA. It’s difficult to assess which library calls are
important and require a closer inspection, while DOWSER explicitly selects complex
code fragments.

TaintScope [132] is similar in that it also uses DTA to select fields of the input
seed which influence security-sensitive points (e.g., system/library calls). In addi-
tion, TaintScope is capable of identifying and bypassing checksum checks. Like
Buzzfuzz, it differs from DOWSER in that it ignores implicit flows and assumes only
that library calls are the interesting points. Unlike BuzzFuzz, TaintScope operates at
the binary level, rather than the source.

Symbolic-execution-based fuzzing Recently, there has been much interest in white-
box fuzzing, symbolic execution, concolic execution, and constraint solving. Exam-
ples include EXE [20], KLEE [21], CUTE [114], DART [52], SAGE [53], and the
work by Moser et al. [93]. Microsoft’s SAGE, for instance, starts with a well-formed
input and symbolically executes the program under test in attempt to sweep through
all feasible execution paths of the program. While doing so, it checks security prop-
erties using App Verifier. All of these systems substitute (some of the) program inputs
with symbolic values, gather input constraints on a program trace, and generate new
input that exercises different paths in the program. They are very powerful, and can
analyze programs in detail, but it is difficult to make them scale (especially if you
want to explore many loop-based array accesses). The problem is that the number
of paths grows very quickly.

Zesti [88] takes a different approach and executes existing regression tests sym-
bolically. Intuitively, it checks whether they can trigger a vulnerable condition by
slightly modifying the test input. This technique scales better and is useful for find-
ing bugs in paths in the neighborhood of existing test suites. It is not suitable for
bugs that are far from these paths. As an example, a generic input which exercises
the vulnerable loop in Figure 2.1 has the uri of the form "//{arbitrary characters}",
and the shortest input triggering the bug is "//../". When fed with "//abc", [88]
does not find the bug—because it was not designed for this scenario. Instead, it re-
quires an input which is much closer to the vulnerability condition, e.g., "//..{an
arbitrary character}". For DOWSER, the generic input is sufficient.

SmartFuzz [92] focuses on integer bugs. It uses symbolic execution to construct
test cases that trigger arithmetic overflows, non-value-preserving width conversions,
or dangerous signed/unsigned conversions. In contrast, DOWSER targets the more
common (and harder to find) case of buffer overflows. Finally, Babi¢ et al. [12]
guide _symbolic_execution. to. potentially vulnerable program points detected with
static analysis. However, the interprocedural context- and flow-sensitive static anal-

o
.
]
2
o
©
e
®)

34 CHAPTER 2. DOWSER

ysis proposed does not scale well to real world programs and the experimental results
contain only short traces.

2.8 Conclusion

DOWSER is a guided fuzzer that combines static analysis, dynamic taint analysis,
and symbolic execution to find buffer overflow vulnerabilities deep in a program’s
logic. It starts by determining ‘interesting’ array accesses, i.e., accesses that are most
likely to harbor buffer overflows. It ranks these accesses in order of complexity—
allowing security experts to focus on complex bugs, if so desired. Next, it uses
taint analysis to determine which inputs influence these array accesses and fuzzes
only these bytes. Specifically, it makes (only) these bytes symbolic in the subse-
quent symbolic execution. Where possible DOWSER’s symbolic execution engine
selects paths that are most likely to lead to overflows. Each three of the steps con-
tain novel contributions in and of themselves (e.g., the ranking of array accesses,
the implicit flow handling in taint analysis, and the symbolic execution based on
pointer value coverage), but the overall contribution is a new, practical and complete
fuzzing approach that scales to real applications and complex bugs that would be
hard or impossible to find with existing techniques. Moreover, DOWSER proposes a
novel ‘spot-check’ approach to finding buffer overflows in real software.

Acknowledgment

This work is supported by the European Research Council through project ERC-
2010-StG 259108-ROSETTA, the EU FP7 SysSec Network of Excellence and by the
Microsoft Research PhD Scholarship Programme through the project MRL 2011-
049. The authors would like to thank Bartek Knapik for his help in designing the
statistical evaluation.

35

2.8. CONCLUSION

2 Jerdeyn

$914q 0011 syutod 947¢ MOPIOA0 OBIS

98 L19 yg8 < yg < 1eyoed 4an ASL 919 YLI/09 30O YYT | TSTE-SO00C-HAD 0'y'C 1ous
SALQ ¥ + $201 syutod (f mop1aro deay

008 LLT 99 LT Y8 < | Wduay/3el AIXH A0T TTI [€/G1 JO N0 G| €18C-CI0C-HAD 0T°9°0 J1xoq1]

SAAQ ¥ + $201 syutod (f 10119 QU0-KqQ-JJO

008 [pE 99s [y Y8 < | pSudy/3el JIXH A0T I¢CH [€/G1 JO 1IN0 (G| 0¥8¢-CI10C-HAD 0T°9°0 1xoq1]
SAAq + + $201 syutod 10g mopIaao deay

098769 995769 yg < | psudj/3el JIXH A0T I¢H 1€/G1 Jo Ino |1y 1¥8C-CI0C-HAD 0T°9°0 J1xoq1]
S14Q 201 syutod 016 mopgIaao deay

998 T9L yg < yg < oy pappaquiy | YOTI LELL +06/88€JO MO UGS | $0LE-010CT-HAD | 0°S1°0 1orddod
S914Q 201 syutod G/ 01 peanaao deay

98] yg< yg< agewt DHA(A0TI LELT +06/88€J0MOWGE | NMONMNA | 0610 0iddod
$14q 10¢ syutod 679 mopaaao deay

098 T¢ 995 007 99s 00 | esuodsar SN ASY OSLI 9L1/99 JO IO IS | 9€81-C10C-HAD | ¢TI’ pandsur
SAKQ 7T syutod 9817 peanaao deoy

098 8Y yg8 < yg8 < 9[qe) uewiyny A00€ 98CI 6I¥I/LTL JO Mo pig NAONIINN 6’0 Soduuy
S94q 0S syutod (g9 mopaspun deoy

998 £6T yg8 < yg8 < PIPY 1N A99 LIS 0¥1/29 30 1o Ry 629T-600C-HAD T€'9°0 XuIsu

ddsmoad UTS-IN HTSA Do sdoog 3I03S DV
U0NNIIXI J[OqUIAS ndur dijoquiAg Suismo(q LIqesdunp weidorq

Table 2.2: Applications tested with DOWSER. The Dowsing section presents the results of

DowsER’s ranking scheme. AG score is the complexity of the vulnerable analysis group - its

position among other analysis groups; X/Y denotes all analysis groups that are "complex enough"”
to be potentially analyzed/all analysis groups which access arrays; and the number of points it

scores.. Loops.counts outermost loops.in the whole program, and LoC - the lines of code

according to sloccount. Symbolic input specifies how many and which parts of the input were

determined to be marked as symbolic by the first two components of DOWSER. The last section

shows symbolic execution times'until revealing the bug.

Scalable Data Structure Detection
and Classification for C/C++ Binaries

Abstract

Many existing techniques for reversing data structures in C/C++ binaries are limited
to low-level programming constructs, such as individual variables or structs. Un-
fortunately, without detailed information about a program’s pointer structures, foren-
sics and reverse engineering are exceedingly hard. To fill this gap, we propose MEM-
PICK, a tool that detects and classifies high-level data structures used in stripped
binaries. By analyzing how links between memory objects evolve throughout the
program execution, it distinguishes between many commonly used data structures,
such as singly- or doubly-linked lists, many types of trees (e.g., AVL, red-black trees,
B-trees), and graphs. We evaluate the technique on 10 real world applications, 4 file
system implementations and 16 popular libraries. The results show that MEMPICK
can identify the data structures with high accuracy.

37

38 CHAPTER 3. MEMPICK

3.1 Introduction

Modern software typically revolves around its data structures. Knowing the data
structures significantly eases the reverse engineering efforts. Conversely, not know-
ing the data structures makes the already difficult task of understanding the pro-
gram’s code and data even harder. In addition, a deep knowledge of the program’s
data structures enables new kinds of binary optimization. For instance, an optimizer
may keep the nodes of a tree on a small number of pages (to reduce page faults and
TLB flushes). On a wilder note, some researchers propose that aggressive optimizers
automatically replace the data structures themselves by more efficient variants (e.g.,
an unbalanced search tree by an AVL tree) [74], [75].

Accurate data structure detection is also useful for other analysis techniques. For
instance, dynamic invariant detection [43] infers relationships between the values of
variables. Knowing the types of pointer and value fields, for instance in a red-black
tree, helps to select the relevant values to compare and to avoid unnecessary com-
putation [59]. Likewise, principal components analysis (PCA) [69] is a technique
to reduce a high-dimensional set of correlated data to a lower-dimensional set with
less correlation that captures the essence of the full dataset but is much easier to
process. PCA is used in a wide range of fields for many decades. In recent years, it
has become particularly popular as a tool to summarize tree data structures [60; 11].

Unfortunately, most reversing techniques for data structures in C/C++ binaries
focus on “simple” data types: primitive types (like int, float, and char) and their
single block extensions (like arrays, strings, and structs) [59; 86; 119; 85]. They do
not cater to trees, linked lists, and other pointer structures.

Existing work on the extraction of pointer structures is limited. For instance,
the work by Cozzie et al. is unabashedly imprecise [34]. Specifically, they do not
(and need not) care for precise type identification as they only use the data structures
to test whether different malware samples are similar in their data structures. Of
course, this also means that the approach is not suited for reverse engineering or
precise analysis.

A very elegant system for pointer structure extraction, and perhaps the most pow-
erful to date, is DDT by Jung and Clark [74]. It is accurate in detecting both the data
structures and the functions that manipulate them. However, the approach is limited
by its assumptions. Specifically, it assumes that the programs access the data struc-
tures exclusively through explicit calls to a set of access functions. This is a strict re-
quirement and a strong limitation, as in/ine manipulation of data structures—without
separate function calls—is common. Even if the programmer defined explicit access
functions, most optimizing compilers inline short access functions in the more ag-
gressive optimization levels. Also, in their paper, Jung and Clark do not address the
problem of overlapping data structures—Ilike a linked list that connects the nodes
of a tree.. Overlapping data structures, sometimes referred to as overlays, are very
common also.

3.1. INTRODUCTION 39

3.1.1 Contributions

In this paper, we describe MEMPICK: a set of techniques to detect and classify heap
data structures used by a C/C++ binary. MEMPICK requires neither source code,
nor debug symbols, and detects data structures reliably even if the program accesses
them inline. Detection is based on the observation that the shape of a data structure
reveals information about its type. For instance, if an interconnected collection of
heap buffers looks like a balanced binary tree throughout the program’s execution,
it probably is one. Thus, instead of analyzing the instructions that modify a data
structure, we observe dynamically how its shape evolves. As a result, MEMPICK
does not make any assumptions about the structure of the binary it analyzes and
handles binaries compiled with many different optimization levels, containing inline
assembly, or using various function calling conventions.

Since our detection mechanism is based solely on the shape of data structures,
we do not identify any features that characterize their contents. For instance, we
cannot tell whether a binary tree is a binary search tree or not. Nor do we pinpoint
the functions that perform the operations on data structures.

On the other hand, MEMPICK is suitable for all data structures that are distin-
guishable by their shape. The current implementation handles singly- and doubly-
linked lists (cyclic or not), binary and n-ary trees, various types of balanced trees
(e.g., red-black treed, AVL trees, and B-trees), and graphs. Additionally, we imple-
mented measures to recognize sentinel nodes and threaded trees.

One of the qualitatively distinct features of MEMPICK is its generic method for
dealing with overlays (overlapping data structures). Overlays complicate the clas-
sification, as the additional pointers blur the shape of the data structures. However,
even if all nodes in a tree are also connected via a linked list, say, MEMPICK will
notice the overall data structures and present them as a “tree with linked list” to the
user.

Since MEMPICK relies on dynamic analysis, it has the same limitation as all
other such techniques—we can only detect what we execute. In other words, we are
limited by the code coverage of the profiling runs. While code coverage for binaries
is an active field of research [28; 53], it is not the topic of this paper. In principle,
MEMPICK works with any binary code coverage tool available, but for simplicity,
we limited ourselves to existing test suites in our evaluation.

3.1.2 Outline

We start by giving more context about binary analysis in Section 3.2 and provide
two example applications in Section 3.3. In Section 3.4 we describe the overall
architecture of the system. Section 3.5 presents details about the low-level manipu-
lation of the memory graph, that is the basis of our high level data structure repre-
sentation from.Section.3.6. Section.3.7 deals with the intricacies of data structure
classification, that are extended with additional details about height balanced trees

40 CHAPTER 3. MEMPICK

in Section 3.8. In Section 3.9 we give an overview of information offered to the
user, followed by an extensive evaluation in Section 6.9. We also discuss the com-
putational complexity in Section 3.11 to argue about the scalability of the proposed
approach. In Section 4.2.2 we look at the observed limitations and possible exten-
sions to MEMPICK. Finally we discuss related projects on data structure reverse
engineering in Section 3.13 and conclude the paper in Section 5.5.

This paper is an extended version of our WCRE 2013 publication [61].

3.2 Static versus dynamic analysis

There are two main approaches to reverse engineering, static and dynamic analysis.
In this section we discuss the pros and cons of each for data structure discovery and
explain why we opted for dynamic analysis.

Static analysis reasons about the application without executing it. This enables
the analysis of components that are difficult to execute normally. While static analy-
sis is the most suitable to reason about the application as a whole, it is fundamentally
imprecise for weakly typed languages such as C/C++/Assembly due to pointer alias-
ing and indirect control flow changes. This typically manifests itself in either false
positives [73] or false negatives [42] depending on the analysis model. In the area
of binary analysis even the most powerful static technique has problems handling
even the most basic aggregate arrays [14]. On the other hand dynamic analysis is
inherently context sensitive since it reasons about a concrete execution path. While
this approach can only cover what is executed, the added run-time information im-
proves the precision and the scalability of MEMPICK. In the following we discuss
the validity of detecting pointer structures using only dynamic analysis.

Complex data structures represent the core of most algorithms, and are thus used
pervasively throughout the application. Data structures implementations are also
typically designed as reusable software components, and employed in multiple con-
texts within the same application. In consequence, complete code coverage is not
an appropriate measure for the effectiveness of data structure discovery. Functional
coverage, which measures coverage in program features is more relevant for this
type of analysis. We believe that in practice a reasonable sized set of unit tests can
provide enough functional coverage to extract the core data structures using MEM-
PI1CK. Our evaluation confirms this assumption, since we discovered more than 100
different data structures in 10 applications using basic inputs.

3.3 Example applications

To demonstrate the usefulness of MEMPICK, we describe two possible applications:
malware analysis and retrofitting security to legacy binaries not designed with secu-
rity in.mind. We target MEMPICK at binary analysis where no source code or high
level information is available directly from the application. This scenario is typical

3.3. EXAMPLE APPLICATIONS 41

of malware analysis, which is critical in taking down large scale malicious infras-
tructures such as botnets [111]. MEMPICK is also applicable to benign applications,
not for reverse engineering their contents, but to discover and secure existing struc-
tures [120].

3.3.1 Case study 1: Malware analysis

With the transition towards online services, there is an ever greater incentive to in-
fect user machines with different varieties of malware. Botnets go beyond the tradi-
tional single instance attacks, connecting instead the infected machines in a custom
network, used to control and monetize the system. Security experts and law en-
forcement on the other hand aim to infiltrate and disrupt this network in a botnet
takedown. This process is exceedingly difficult due to the encryption and custom
protocols employed in botnets.

Rossow et. al. [111] provide an insightful analysis on the resilience of the state-
of-the art Peer-To-Peer botnet families and potential avenues of attack. This work
relies heavily on the reverse engineering of the communication protocols and the
underlying encryption algorithms. This process is currently mostly manual effort re-
lying on the experience of the reverse engineer to discover high level code structures.
With MEMPICK, we aim to provide additional information about pointer structures
in order, to complement the low-level data structure information from Howard [119].
Pointer structures are highly relevant, since malware designers can easily integrate
them to distribute information within different memory objects. Further extensions
of MEMPICK could also detect and semantically annotate the code manipulating the
data structure, allowing the reverse engineer to focus his attention on application
logic instead.

3.3.2 Case study 2: Security hardening for third party applications

System administrators frequently have to deal with the integration of closed-source
components into their systems, such as third party libraries or device drivers. These
components may contain vulnerabilities, that impact the security of the whole sys-
tem. For example researchers at Microsoft confirm that many vulnerabilities in de-
vice drivers stem from the misuse of pointer structures [136]. Recent research in
system security started to shift focus from compiler based security enhancements
towards binary hardening to overcome this challenge [120; 141].

MEMPICK detects the pointer data structures within the potentially vulnerable
code as a starting point for the hardening process. The vulnerabilities include race
conditions on the data structure, as well as malicious out-of-band changes by an at-
tacker. Slowinska et. al. [120] developed a solution that leverages low-level data
structure detection to harden these constructs against potential attacks. In the fu-
ture we-hope.to.infer semantic information about the underlying interface functions
as-well. This will enable fully automatic monitoring of data structure validity to

42 CHAPTER 3. MEMPICK

binary o

to analyze s data structures
= O 5> identified by
i N fa MemPick

Pin e
\/ 5 2\\\:
I. Collect traces: Il. Offline analysis: I1I. Final mapping:
Run the binary many See how the memory Combine the results
times. Log all heap graph evolves over time, and present them to
allocations and accesses. detect individual data the user.

structures, and then the
overall one. (Refer to

Steps @ln Fig. 2.)

Figure 3.1: MEMPICK: high-level overview.

uncover attacks or bugs at run-time.

3.4 MEMPICK

We now discuss our approach in detail. Throughout the paper, we will use the data
structure in Figure 3.2 as our running example. The example is a snapshot of a
binary tree with three overlapping data structures: a child tree, a parent tree and
a list facilitating tree traversal. Each node of the tree has a pointer to a singly-
linked list of some unrelated objects that ends with a sentinel node. The example is
sufficiently complex to highlight some of the difficulties MEMPICK must overcome
and sufficiently simple to track manually.

Figure 3.1 illustrates a high-level overview of MEMPICK. The detection proce-
dure consists of three major stages. First, we record sample executions of an appli-
cation binary. Next, we feed each of them to an offline analysis engine that identifies
and classifies the data structures. Finally we combine the results and present them
to the user.

The first stage requires tracking and recording the execution of the application,
and for this we use Intel’s PIN binary instrumentation framework [71]. PIN provides
arich API that allows monitoring context information, e.g., register or memory con-
tents, for select program instructions, function- and system calls. We instrumented
Pin to record memory allocation functions, along with instructions storing the ad-
dresses of all buffers allocated on the heap. In the remainder of this paper, we as-
sume that applications use general-purpose memory allocators like malloc() and
free(), or mmap (). It is straightforward to use the approach by Chen et al. [26] to
detect custom memory allocators and instrument those instead.

For the offline analysis stage, MEMPICK analyzes the shape of links between
heap buffers to identify the data structures. It consists of four further steps. In this
section, we describe them briefly and defer the details to later sections (see also the
circled numbers in Figure 3.2).

(@ MEMPICK first organizes all heap buffers allocated by the application, along

3.4. MEMPICK 43

typedef struct list node {
data_t data;
lnode_t *next;

} lnode_t;

typedef struct tree_node {
data_t data;
tnode_t *left, *right;
tnode_t *parent, *next;
lnode_t *list_elem;

} tnode_t;
Data structures used in the memory graph. (a) The memory graph after MemPick
As MemBrush operates at the binary level, identified the types of the objects.
it does not have access to this information.

(b), The memory graph split into two partitions containing
@ objects of the same type. MemPick also found one sentinel
node (denoted by the double circle).

(c) MemPick detected three overlapping data structures in the collection

of the squared nodes: a child tree, a parent tree, and a list. Each of them

is denoted by a different line ty{)e. Next, the collection of the squared nodes
is classified as a binary tree with a linked list, and the collection of the circled
nodes as three sinlgly-linked lists.

(d) MemPick measures if the tree is balanced. It measures the height of
the subtrees recursively, and concludes that it is unbalanced.

Figure 3.2: A running example illustrating MEMPICK'’s detection algorithm.

44 CHAPTER 3. MEMPICK

with all links between them, into a memory graph. It reflects how the connec-
tions between the buffers evolve during the execution.

(@ Next, MEMPICK performs type analysis to split the graph into collections of
objects of the same type. For instance, Figure (3.2a) illustrates a fragment of
the memory graph at a point when the tree contains 8 nodes, and Figure 3.2b
partitions the data structure into objects of the same type.

(® Given the partitions, MEMPICK analyzes the shape of the data structures by
considering the links in each partition, searching for overlapping structures,
and finally identifying types. For example, in Figure (3.2c), all squared nodes
would end up in one partition. Since it is common for data structure implemen-
tations to use auxiliary pointers, e.g., to form a parent tree, or a list facilitating
traversal, the overall shape can become convoluted, such as it is the case in
Figure (3.2c). By looking at the overlapping structures, MEMPICK first learns
that the collection of squared nodes contains a child tree, a parent tree, and a
list, while each circled partition is a list. It then classifies the first data structure
as a binary tree by means of a decision tree.

(® Finally, MEMPICK measures how each tree used by the application is balanced
in order to distinguish between various types of height-balanced trees, e.g.,
red-black and AVL trees. This is illustrated in Figure (3.2d).

We discuss each step in detail in Sections 3.5-3.8. Once all the execution traces
are analyzed, we combine the results, and present them to the user (Section 3.9).

3.5 Memory Graphs: Interconnected Heap Objects

A memory graph illustrates how links between heap objects evolve during the ex-
ecution of an application. By itself, this is not enough to extract the links that are
relevant to identify a data structure. For instance, in Figure 3.2a, we do not want
to report a graph comprising all the nodes, but rather classify the tree and the lists
separately. For this purpose, MEMPICK strips connections between nodes featuring
different logical types. We introduce the term logical type, to be able to reason about
a weak form of type equality, necessary when dealing with potentially polymorphic
types. Two objects share a logical type if either their low-level C/C++ type is iden-
tical or one object can be used in place of another, i.e. sub-classes or equivalent
behavior in C.

Building the graph Like RDS [109] and DDT [74], MEMPICK inserts new
nodes in the graph whenever a heap allocation occurs, and deletes existing ones upon
deallocation. Edges represent connections between the allocated buffers. MEMPICK
adds or removes them whenever the application modifies a link between two heap
objects. This happens either on instructions that store a pointer to one object in
another one, on.instructions.that clear previous pointers, or on calls to the memory
deallocation functions.

3.5. MEMORY GRAPHS: INTERCONNECTED HEAP OBJECTS 45

Tagging the graph with type information Conceptually MEMPICK assigns
two objects the same logical type if they could both be used in the same operand
position of a given instruction. This follows the intuition that an instruction carries
implicit typing of its operands. However, to avoid false-positives (classifying two
different objects together), MEMPICK first excludes instructions that might be fype
agnostic and handle objects of various types, such as instructions in memcpy-like
functions.

Next we describe the type inference algorithm in more detail. The algorithm ini-
tially associates each instruction with a pair of unique tags, one for its source and one
for its destination operand. Whenever a heap object is used as operand for a given
instruction, it inherits the corresponding instruction tag. This ensures that different
heap objects used within the same instruction operand all share a unique tag. If the
heap object is already associated with another tag, than both tags correspond to the
same logical type, and have to be merged into one. The tag change is then prop-
agated across all heap objects to ensure consistency. While this algorithm is very
simple, it successfully captures our assumptions about logical types. Even though
the system starts out with zero assumptions and a highly fragmented tag space, the
merging operation quickly converges and identifies a small set of logical types within
the program.

During this algorithm it is critical to avoid any instructions with ambiguous typ-
ing. To do so, MEMPICK classifies an instruction as fype aware if it consistently
stores a pointer to a heap buffer (or NULL) to a memory location at a specific, con-
stant offset in another heap buffer. In other words, we do not consider instructions
that store non-pointer values to the heap objects, or that store the pointers at differ-
ent offsets at different times, etc. However, as it is common for applications to keep
sentinel nodes in static or stack memory, we need to relax these filtering condition a
little to allow for pointers to sentinel nodes.

The way MEMPICK extends the memory graph with type information is different
from the approach used by DDT [74]. In particular, DDT applies typing based on
allocation site, which poses problems when an application allocates an object of the
same type in multiple places in the code—which is quite common in real software.
For example, linked lists allocate memory nodes when inserting elements both in
the STL (push_front and push_back) and the GNOME GLib (g_list_append and
g_list_prepend) libraries. To handle these cases, DDT further examines if objects
from different allocation sites are modified by the same interface functions in another
portion of the application. As discussed in Section 3.1, relying on the interface is
a strong assumption that fails in the case of code that uses macros, say, rather than
function calls to access the data structures, or in the face of aggressive optimization
where the access code is inlined.

If necessary, we can further refine our analysis with existing approaches to data
structure detection, like Howard [119] or static analyses [13; 108; 110]. While none
of these techniques.can.combine objects from different allocation sites, they would
help reduce possible false positives. For all experiments in this paper, however, we

46 CHAPTER 3. MEMPICK

use MemPick’s mechanism exclusively.

3.6 From Memory Graph to Individual Data Structures

Given the memory graph, MEMPICK divides it into subgraphs, each containing in-
dividual data structures. These data structures will form the basis for our shape
analysis (see Section 3.7). As illustrated in Figure (3.2b), the output partitions are
connected subgraphs whose nodes all have the same type.

MEMPICK starts by removing from the graph all links that connect nodes of
different types. Doing so splits the graph into components that each reflect transfor-
mations of individual structures during execution. In the example from Figure 3.2,
one of the partitions would illustrate the growth of the tree.

Observe that not every snapshot of the memory graph is suitable for shape anal-
ysis. The problem is that properties characteristic to a data structure are not nec-
essarily maintained at each and every point of the execution. For example, if an
application uses a red-black tree, the tree is often not balanced just before a rotate
operation. However, in all the quiescent time periods when the application does not
modify the tree, its shape retains the expected features, e.g., it is balanced, every
node has at most one parent, there are no cycles, and so on. Therefore, MEMPICK
performs its shape analysis only when a data structure is quiescent.

MEMPICK defines quiescent periods in the number of instructions executed.
Specifically, we measure the duration (in cycles) of the gaps between modifications
of the data structures and then pick the longest n% as the quiescent periods. As
long as we are sufficiently selective, we will never pick non quiescent periods. For
instance, in our experiments, we picked only the longest 1% gaps as quiescent peri-
ods. The dynamic gap size allows MEMPICK to adapt to the characteristics of each
binary and data structure. Compiler options and data usage patterns all contribute
to the observed gap sizes. The method defined in MEMPICK benefits from two core
properties, 1) it guarantees a lower bound of quiescent periods for every data struc-
ture, 2) it provides maximum robustness, by selecting the largest possible gap size
that still satisfies the quiescent period frequency desired by the reverse engineer.

Before we pass the stable snapshots of each data structure to the shape analyzer,
we detect and disconnect sentinel nodes. The problem of sentinels is that they blur
the shape of data structures. For example, if we did not disconnect the sentinel node
in Figure (3.2b), it would be difficult to see that the partition of circled nodes is in
fact a collection of three lists.

To pinpoint sentinel nodes in a partition of the memory graph, MEMPICK counts
the number of incoming edges for each node, and searches for outliers. While this
strategy works well for lists, trees, and graphs, it might break some highly cus-
tomized data structures. For example, in the case of a star-shaped data structure, it
disconnects the central node, and MEMPICK reports a collection of lists.

Finally, for each partition of the memory graph, we acquire its snapshots in the

3.7. SHAPE DETECTION 47

quiescent periods, and use them in the following stage of MEMPICK’s algorithm,
discussed in the next section.

3.7 Shape Detection

We identify the shape of the graph-partitions based on observations during the qui-
escent periods. As we described above, MEMPICK focuses on quiescent periods
since they represent the stable state of the data structure. Any given shape hypoth-
esis needs to hold for every “snapshot” of the graph-partition, since it represents a
globally valid property of the data structure. Outliers are not allowed, as they would
reduce the certainty of the final hypothesis. Since data structures often overlap and
each of the overlapping substructures blur the actual shape, we identify them first.
For instance, in Figure (3.2¢), it is not simple to tell that the component composed of
squares actually represents a tree. Only after we distinguish between the child tree,
the parent tree, and so on, does the identification become straightforward. Given the
overlapping structures, we employ a hand-crafted decision tree that finally classifies
the data structure. As a final step, we offer support for refined classifiers cases that
discover data structures requiring more advanced analysis, e.g., threaded trees. We
now discuss the stages in turn.

3.7.1 Overlapping Data Structure ldentification

To find overlapping data structures, we search for sets of pointer variables that keep
all nodes of the data structure connected. To exclude unnecessary pointers from
such sets, we define the term minimal pointer set. Each of these sets features the
following properties: the subgraph generating by maintaining only the edges cor-
responding to the pointers remains connected; also no subset of a minimal pointer
set holds the first property. Intuitively eliminating any entry from such a set leads
to a disconnected data structure. The problem of finding the minimal pointer set is
analogous to the maximal set and set cover problems in complexity theory. In the
remainder of this section, we refer to the constituent overlapping data structures as
overlays, following a similar notion in network graphs.

In particular, for each partition of the memory graph, we consider a set P =
{p1,...,pn}, where each p; is the offset of a pointer variable in the struct or class
representing the node type. For example, in Figure 3.2, we have P = {4, 8,12, 16},
which maps to the set of pointers in the tree: {left, right, parent, next}. Next,
we list all maximal subsets of P that keep the partition connected. The subsets
are maximal in the sense that they do not contain any redundant elements, i.e.,
if we remove an element from a subset, the remaining pointers do not cover the
whole partition. In the tree in Figure 3.2, we identify the following set of overlays:
{{4,8},{12}, {16} }. . The first overlay uses the left and right pointers to connect
the tree from a top-down perspective. The second overlay uses the parent pointer

48 CHAPTER 3. MEMPICK

The overlapping structure contains The overlapping structure contains
the left and right children edges. the left child edge and the sibling edge.

Figure 3.3: An example binary tree with three pointer variables: left, right, and sibling. It has
three overlapping data structures: {left, right} depicted on the left (denoted by the solid edges),
{left, sibling} depicted on the right and {right, sibling}. Observe that the overlapping data
structures are not disjoint — both contain the left child edge.

for the potential of a bottom-up traversal. The last overlay is an alternate linked-list
style overlay using next pointer to access all nodes without having to traverse the
tree. While the overlays in this example involve a disjoint set of pointers, in practice
pointers may also be shared, as it is the case in the example from Figure 3.3. In this
example neither pointer can form an overlay by itself, but any combination of two
results in a connected data structure and should be reported for further analysis.

Finally, overlays are also interesting for non-tree shapes, as the can help to dis-
ambiguate non-standard list variants. For example, the non-circular doubly-linked
list within the utlist library uses a peculiar implementation. While the next pointer
is implemented as a traditional non-circular linked list, the prev pointer is made to
be circular. Such hybrid implementations can difficult to identify, due to the lack of
symmetry, without separating the individual overlays.

Once the overlays are identified, we apply the rules in Table 3.1 to classify each
overlay individually. Columns 2-5 specify the number of incoming and outgoing
edges for ordinary and special nodes, while the last one defines how many special
nodes there are . For instance, each “ordinary” (internal) node of a list has one in-
coming and one outgoing edge; additionally each list has one node with just one
outgoing edge (the head), and one node with just one incoming edge (the tail). Cur-
rently, we do not distinguish between different classes of graph, e.g., cyclic and
acyclic graphs, but extending the list of rules is straightforward.

3.7.2 Data Structure Classification

Finally, MEMPICK combines the information about all overlays, and reports a high-
level description.of the partition.being analyzed. This step follows a decision tree
presented in Figure 3.4. To classify the tree in Figure (3.2c), MEMPICK first checks

3.7. SHAPE DETECTION 49

Table 3.1: MEMPICK'’s rules to classify individual overlays. They specify
the number of incoming and outgoing edges for ordinary and special

nodes.
Type Ordinary nodes Special nodes
in out in out #
List 1 1 0 1 1
1 0 1
Circular list 1 1 - - -
Binary child tree 1 {0,1,2} 0 {1.2} 1
Binary parent tree {0,1,2} 1 {1,2} 0 1
3-ary child tree 1 {0,...,3} 0 {1,..,3} 1
3-ary parent tree {0....,3} 1 {1....,3} 0 1
n-ary child tree 1 {0,....,n} 0 {1,..n} 1
n-ary parent tree {0.....n} 1 {1....n} 0 1
Graph all the remaining cases

that the data structure has no graph overlays. Since it contains a binary child and
a parent tree overlays, MEMPICK reports a binary tree (with an additional linear
overlay). To refine the results, MEMPICK additionally measures the balance of the
tree in Section 3.8.

3.7.3 Refinement Classifiers for Special Data Structures

Some popular data structures have very specific shapes for which the general classifi-
cation rules of Section 3.7.2 are not sufficient. Threaded trees are one such example,
currently support by MEMPICK. In order to increase the accuracy of it classification,
MEMPICK allows for the addition of refinement classifiers that are tailored for spe-
cific data structures. We will discuss the threaded tree as an example, as it is the only
common data structure with an “exceptional” shape we encountered throughout our
extensive evaluation (Section 3.10).

Threaded trees represent a variation on the binary tree representation that is used
in practice. In a threaded tree, all child pointers that would be null in a binary
tree, now point to the in-order predecessor or the in-order successor of the node.
For instance, the left child could point to the predecessor and the right child to the
successor. Alternatively, the data structure may use only one of the children for
threading. Without loss of generality, assume the threaded tree uses the right child
node to thread to the successor node. Threading facilitates tree traversal, without
relying on parent pointers or recursion. The additional links are known as threads,
and can use either one or both child pointers. Refer to Figure 3.5 for an example
threaded tree. In our experiments, threaded trees appear in three libraries, including
the GNOME GLib library.

50 CHAPTER 3. MEMPICK

(" Agraph with a tree
YE! overlapping structure.
. Yes A graph with a linear,
YES Does it contain a tree? overiapping structure.
Does it contain an extra ;
overlapping structures NO Does it contain a list?
NO Agraph. NO Agraph.
YES

measures the balance.
Does it conlzm an n-ary
lrEE

NO
Does it contain a tree?

A bmary tree. MemPick
measures (he balance.

YES, A doubly-linked list.

Does it contain two lists?
(Circular or uncircular)

Asingly-linked list.

An unclassifed data
structure.

Figure 3.4: MEMPICK’s decision tree used to perform the final classification of a partition of the
memory graph.

NO Does it contain one list?

Since a threaded child pointer keeps all nodes of the tree connected, it forms a
single element overlapping structure. Observe that it has the shape of a binary parent
tree. Thus, a child pointer is either threaded, and it forms a binary parent tree over-
lapping structure itself, or it is not threaded, and never included in an overlapping
structure. Since it is an extraordinary situation, MEMPICK performs further analysis
to test if this partition of the memory graph is a threaded tree. It searches for a root
candidate to which it can successfully apply the un-threading algorithm [135]. After
this step, it obtains a binary child tree overlapping structure, and the final classifica-
tion is straightforward.

3.8 Classification of Height-balanced Trees

Once the shape detection step in Section 3.7.2 classifies a data structure as a tree,
MEMPICK also attempts to reason about the properties of the tree to allow for a
more precise classification. We have identified that the size and height properties
of the different sub-trees within a tree offer enough information for more detailed
classification of height-balanced trees [31]. These properties also map well to the
shape-only classification algorithm presented so far. MEMPICK recognizes height-
balanced trees [31], and identifies AVL, red-black and B-trees. AVL trees are binary
trees where the heights of the child subtrees of any node differ by at most one.
Red-black trees on the other hand allow the height of the longest branch to be at
most two times that of the shortest branch. B-trees combine high child count with
perfect balance, all leaf nodes are located at the same height. Other balanced tree
variants, like binomial or 2-3-4 trees can also be described based on their worst case
imbalance and maximum child count.

MEMPICK measures the height of a tree recursively, starting at the root (i.e., the
node with._no.incoming edges)... While computing the height of the left and right
subtrees, iz, and hp, respectively, MEMPICK keeps track of both the absolute and

3.9. FINAL MAPPING 51

7
/7
— left child edge AN ,
—> right child edge 3
- - -» right child thread NULL %

Right-threaded binary tree. Binary parent tree corresponding
to the overlapping structure formed
by the right child.

Figure 3.5: The left-hand side figure presents an example right-threaded binary tree, and the
right-hand side one illustrates the corresponding overlapping binary parent tree.

relative height imbalance, i.e., |hy — hr| and hr/hg. It classifies the tree as an
AVL tree, if for all its subtrees |hy, — hr| < 1, and as a red-black tree — under the
condition that % < hr,/hgr < 2. For non-binary trees it checks the B-tree property of
|hr, —hgr| = 0. Since MEMPICK focuses its analysis on the shape of a tree, it might
misclassify a foo balanced red-black tree as an AVL tree. However, if a red-black
tree is always perfectly balanced, this behavior is very useful for an analyst to know
about.

3.9 Final Mapping

In the final step, MEMPICK combines the results of the partitions from the different
execution traces, and presents them to the user. The summaries generated by MEM-
P1cK include each unique partition classification and their occurrence count. Thus
no outliers are excluded, while the user is not overwhelmed with 100s of copies of
the same classification.

MEMPICK can also project the detected data structures to local or global vari-
ables of the application. Whenever the application stores a pointer to an identified
heap buffer in either stack or static memory, MEMPICK maps the destination to the
stack frame of the currently executing function or a global memory location, respec-
tively.

Since MEMPICK already operates with the notion of multiple independent par-
titions for a given data structure, it is straightforward to merge information from
multiple runs..The only requirement for this process is the ability to detect types
globally, between different application runs. The type inference engine in MEM-

52 CHAPTER 3. MEMPICK

PICK supports this requirement, by operating at the level individual instructions,
which do not change between runs. The resulting global types allow MEMPICK to
merge the results from multiple runs transparently to the user.

In the future, we plan to merge MEMPICK with Howard [119], a solution to ex-
tract low-level data structures from C binaries. As Howard automatically generates
new debug symbol tables for stripped binaries, MEMPICK’s results will fit in per-
fectly, providing the user with more detailed information about the data structures
used by the application. For instance, in Figure 3.2, instead of information that the
application has a pointer to a struct consisting of one integer and five other point-
ers, the user will learn that the application has a pointer to an unbalanced binary tree
with three overlays, and that each node of the tree has a pointer to a singly-linked
list of some other data structures. However, this extension is beyond the scope of
this paper.

3.10 Evaluation

We evaluated MEMPICK on two sets of applications. For the first set, we gathered
as many popular libraries for lists and trees as we could find. We then exercised the
most interesting/relevant functions using test programs from the libraries’ test suites.
These synthetic tests allow us to control exactly the features we want to test. We also
evaluated the quiescent period detection mechanism on these libraries to identify the
requirements for gap size selection. Next, we evaluated MEMPICK on a set of real-
world applications, like chromium, 1ighttpd, wireshark, and the clang compiler.
We also evaluate the analysis time for these applications to show the scalability of
the proposed approach. Finally we also looked into low-level system code with two
major file system implementations, ZFS and ntfs.

3.10.1 Popular Libraries

We tested MEMPICK on 16 popular libraries that feature a diverse set of implemen-
tations for a wide range of data structures. Including libraries in the evaluation has
multiple benefits. Firstly, they provide strong ground-truth guarantees since the data
structures and their features are well documented. Secondly they provide a means to
evaluate a wider range of implementation variants, since most applications typically
rely on a few standard implementations like STL and GLib in practice. For all the
libraries we tried to use the built-in self-test functionality. Only if such a test was
not available, we built simple test harnesses to probe all functionalities.

In the following we present a short summary of the reasoning behind some of
the library choices. The evaluation set contains 4 major STL variants and GLib,
the libraries typically used by major Linux applications. In addition, libavl brings
a large variety. of both balanced and unbalanced binary trees, with different overlay
configurations, like the presence of parent pointers or threadedness. Several libraries

3.10. EVALUATION 53

(like UTlist, BSD queues, and Linux lists) implement inline data structures with no
explicit interface in the final binary—typically by offering access macros instead of
functions. We also include the Google implementation of in-memory B-Trees to
validate the ability of MEMPICK to detect balanced non-binary trees. Typically B-
Trees are implemented in database applications, which operate on persistent storage,
leading to a lack of pointers in the data structure nodes.

Table 3.2 presents a summary of our results gathered from the libraries. We do
not present results for individual data structure partitions as that number is dependent
on the specific test applications. In all scenarios MEMPICK classified all partitions
for any given data structure the same way.

For all tests executed, we encountered a total of two misclassifications, while all
other data structures were successfully identified by MEMPICK (no false negatives).
In the case of GDSL, the shape of the misclassified binary tree is detected appropri-
ately, however MEMPICK reports perfect balancedness since the tree is limited to 3
nodes. The results is still valuable, since MEMPICK reports all other classification
details accurately, this error is also unlikely to occur in applications that deal with
real data. The misclassification in GLib is more subtle. The implementation of the
N-ary tree uses parent, left child and sibling pointers. For optimization purposes
the authors also include a previous pointer in the sibling list. MEMPICK correctly
identifies the presence of an N-ary parent pointer and binary child pointer (left child
+ next sibling) trees, but it also detects an overlay using the left child and previous
sibling pointers. This overlay does not match any basic shape and is reported as a
graph, bringing the overall classification to a graph. Since MEMPICK also reports
the overlay classification to the user, a human reverse engineer can accurately inter-
pret the results. Alternatively, the user can add a (trivial) refinement classifier for
this scenario, since the presence of two overlays does imply more structure than a
generic graph, but we wanted to keep the number of refinement classifiers to a min-
imum. One observation is that both errors were found in libraries supporting a large
variety of data structure implementations. This is not surprising, since the chance
of non-standard data structures is increased with the size of the library. Still our
results show that the overlay based classifier is resilient to unexpected data struc-
ture shapes, by correctly classifying all basic overlays contained within. Even if the
overall classification fails, the partial results are still beneficial as an anchor for the
reverse engineering process.

When testing the ut1ist library, we ran across an interesting classification report.
MEMPICK reported a cyclic and a non-cyclic list overlay for the non-cyclic doubly
linked list in the library. This behavior was confirmed to be a design decision, when
correlating the results with the source code. This example shows the importance of
the overlay based classification employed in MEMPICK. Without this approach the
observed shape and behavior would not match any assumption about linked lists as
the overall structure is neither properly cyclic nor non-cyclic.

54 CHAPTER 3. MEMPICK

Table 3.2: MEMPICK’s evaluation across 16 libraries. #Total is the number
of implementation variants of the given type available in the library,
#TruePos is the number of correctly classified variants, #FalsePos is the
number of misclassified variants

Library Type #Total #TruePos #FalsePos

(=)

boost:container dlist

RB tree
clibutils slist

dlist

RB tree
GDSL dlist

binary tree

RB tree
GLib slist

dlist

binary tree

AVL tree

n-ary tree
gnulib dlist

RB tree

AVL tree
google-btree B-tree
libavl binary tree

RB tree

AVL tree
LibDS dlist

AVL tree
linux/list.h slist

dlist
linux/rbtree.h RB tree
queue.h slist

dlist
SGLIB slist

dlist
STDCXX dlist

RB tree
STL dlist

RB tree
STLport dlist

RB tree
UTlist slist

dlist

[S I e N e S T O T N N T e e S S S SN O T N T e e e T C I N T O S Y
[I e T S T S T N R e e S N N N N I NS e o B e N L I e e
=NeNeoNoNeolsNoNeol-NoReo oo o Neo o oo R Nl = Ne R=E= N =l =Nl Ne i ile ool el

Summarizing these results, we see that MEMPICK successfully deals with a large
variety of data structure implementations. It is capable of correctly identifying the
underlying type,independent of the presence of interface functions and independent
of overlay variations. The results also show the efficiency of classifying balanced

3.10. EVALUATION 55

binary trees based only on shape information, provided the tree is sufficiently large.

Table 3.3: MEMPICK’s gap size evaluation across 16 libraries. The
percentages represent the gap size percentile used for quiescent period
selection. The columns represent the number of data structure
implementations affected, compared to the base-line of using 1% gaps in

table 3.2
Library Type 5% 10% 15% 20%
boost:container dlist 0 0 0 0
RB tree 0 0 0 1
clibutils slist 0 0 0 0
dlist 0 0 0 0
RB tree 0 0 1 1
GDSL dlist 0 0 0 0
binary tree 1 1 1 1
RB tree 0 1 1 1
GLib slist 0 0 0 0
dlist 1 1 1 1
binary tree 0 1 1 1
AVL tree 0 1 1 1
n-ary tree 0 1 1 1
gnulib dlist 0 0 1 0
RB tree 0 1 2 0
AVL tree 0 1 2 0
google-btree B-tree 0 1 1 1
libavl binary tree 2 2 2 2
RB tree 2 2 2 2
AVL tree 2 2 2 2
LibDS dlist 0 0 0 0
AVL tree 1 1 1 1
linux/list.h slist 0 0 0 0
dlist 0 0 0 0
linux/rbtree.h RB tree 0 0 1 1
queue.h slist 0 1 2 2
dlist 2 2 2 2
SGLIB slist 0 1 1 1
dlist 0 1 1 1
STDCXX dlist 0 0 0 0
RB tree 0 0 0 1
STL dlist 0 0 0 0
RB tree 0 0 1 1
STLport dlist 0 0 0 0
RB tree 0 0 1 1
UTlist slist 0 0 1 1
dlist 0 0 0 0

56 CHAPTER 3. MEMPICK

Next we aimed to identify the impact of the gap size percentile used with quies-
cent periods. In Section 3.6 we suggested the use of 1% longest gaps as signal for
quiescent periods. In this part of the evaluation we vary this number all the way to
20% and observe its impact on classification accuracy. We perform this part of the
evaluation on libraries, instead of applications, since they offer more precise ground
truth information. Table 3.3 presents the results, counting for all the data structure
implementations where the classification was degraded in comparison to the original
proposal. In some instances this degradation was in the form of missing overlays,
while in other instances MEMPICK was unable to offer any valid classification. In
general, one can observe that search-trees are more sensitive to the gap size, espe-
cially the implementations within the libavl library. This library offers a cloning
interface for trees, which in some implementation variants does not respect the va-
lidity of the tree throughout the operation. If a quiescent period intervenes during
the clone operation, the system will observe an invalid tree. One must also take into
account, that we tested the libraries using the built-in unit tests whenever they were
available. In this scenario data structure operations are typically executed in quick
sequence, without any intervening application code. This explains the gap size sen-
sitivity for some of the list implementations. Overall, these results suggest that the
quiescent periods should be considered conservatively, especially in the presence of
heavily used, complex data structures. Our suggestion when performing manually
assisted reverse engineering is to start with a highly conservative gap size, which can
progressively be increased to detect data structures potentially missed by the initial
setting.

3.10.2 Applications

MEMPICK is designed as a powerful reverse-engineering tool for binary applica-
tions, so it is natural to evaluate its capabilities on a number of frequently used real
applications. For this purpose we have selected 10 applications from a wide range
of classes, including a compiler (Clang), a web browser (Chromium), a webserver
(Lighttpd), multiple networking and graphics applications. Table 3.4 presents the
number of code lines for each of these applications, giving an idea of their size.

As we discussed in the section 3.4, MEMPICK operates under the assumption
that it can track all memory allocations. Two of the selected applications, namely
Clang and Chromium, use custom memory allocators to manage the heap. In the
case of Clang we also instrumented the custom memory allocators to gain insight to
the internal data structures. For Chromium we were currently unable to perform such
instrumentation. MEMPICK was still able to detect a large number of data structures
that are defined in third-party libraries which still employ the system allocation rou-
tines. In principle, it would be straightforward to detect custom memory allocators
automatically using techniques developed by Chen et al. [26].

3.10. EVALUATION 57

Table 3.4: Number of C/C++ lines of code for the
10 real-world applications, excluding potential
third party libraries.

Application Version Lines of code
chromium 29.0.1548 4190k
clang 3.2 1045k
inkscape 0.48.4 396k
lighttpd 1.4.32 40k
pachi 10.0 13k
povray 3.7.0.RC7 106k
quagga 0.99.22 194k
tor 0.2.4.12-alpha 119k
wget 1.14 68k
wireshark 1.10.0 1727k

Table 3.5 presents an overview of the results from all applications. It is important
to note that for applications there exists no ground-truth information that we can
compare against. For every application reported by MEMPICK we manually checked
the corresponding source code to confirm the classification. We report two types of
errors in table 3.5. One is typing errors, when a given data structure is misclassified
by MEMPICK. The other is partition errors. They refer to data structures that were
classified accurately overall, but for which a number of their partitions contained
erTors.

The accuracy of MEMPICK is demonstrated by the fact that only 3 type misclas-
sifications were detected in all tests on all 10 applications. MEMPICK was successful
in identifying a wide-range of data structures, from custom designed singly-linked
lists to large n-ary trees used for ray-tracing. MEMPICK also highlights different
developer trends in the use of data structures. Some application developers prefer
static storage such as arrays over complex heap structures. Examples for this pattern
include wget and lighttpd. To ensure that this observation is not the result of false
negatives, we manually inspected these two applications for undetected data struc-
ture implementations. As far as our evaluation goes, no data structures were missed
by MEMPICK in these two applications.

Now let us focus our attention on the analysis of the erroneous classification
reported by MEMPICK. The first example is a type misclassification in one of the
linked list implementations in chromium. In this scenario MEMPICK reported a
parent-pointer tree between the memory nodes. Browsing the source reveals the root
of the error to be a programming decision. Nodes removed from the list never have
their internal data cleared, nor are they freed until the end of the application. These
unused memory links will stay resident in memory and confuse our shape analysis.
A potential solution for this problem is a more advanced heap tracking mechanism
with garbage collection.. The latter would identify dead objects in memory and en-
sure that they are removed from the analysis. However we feel that this is not in the

58 CHAPTER 3. MEMPICK

scope of the current paper.

The other two type misclassifications both stem from composite data structures.
Templated libraries such as STL make it possible for the programmer to build com-
posite data structures like list-of-trees or list-of-lists. MEMPICK correctly identifies
the data structure boundaries in situations where node types are mixed, but is un-
able to do so if both components have the same type, like dealing with list-of-lists.
Without such boundaries, MEMPICK will evaluate the shape of the data structure as
a whole. Intuitively, the resulting data structure still has a consistent shape, but fea-
tures increased complexity. A combination of singly-linked lists turns into a child-
pointer tree, while binary trees turn into ternary trees with the addition of the "root
of sub-tree" pointer. This is also exactly what MEMPICK reports in these two sce-
narios. Pure shape analysis is not sufficiently expressive to distinguish between this
pattern and regular child-pointer or ternary-trees, respectively. A reverse-engineer
using MEMPICK can still identify this pattern with good confidence, by observing
that the other partitions of the same type are classified as lists or trees.

Looking at the partition errors in table 3.5, the reader can notice that the vast
majority belong to binary trees. We focus our attention on this class of errors first.
For all misclassifications of this category, MEMPICK erroneously detects AVL bal-
ancedness instead of the weaker red-black or unbalanced properties. As presented
previously in section 3.8 measuring the balancedness of a tree does carry uncertainty
if the tree is too small. We confirmed that for each of the erroneous partitions, the
tree contained no more than 7 nodes, a number too small to identify the difference
between the two tree types. For all trees larger than this size our algorithm has an
error rate of 0%.

Outside of the 3 main groups of errors, MEMPICK reports a few more misclas-
sified partitions. Considering the total number of partitions reported across the 10
applications, these errors represent less than 1% and do not impact the overall anal-
ysis.

As part of evaluating, we also look at the analysis times required when pro-
cessing these applications. We broke down the analysis times to different stages
to identify potential problem areas within the analysis pipeline. We exclude the
tracing component from this evaluation, since none of the proposed contributions
relate to application tracing. The explicit tracing overhead can also be mitigated
when combined with multi-path analysis. The KLEE family of multi-path analysis
tools [21; 88; 89] is a prime example within the software engineering research com-
munity. Tools within the KLEE family emulate memory operations, by first looking
up detailed information about the allocation site at the target address. The tracing
within MEMPICK performs a similar look-up to identify the target heap object, while
also performing a look-up on the value as-well. Thus, the desired tracing function-
ality could also be integrated within tools from the KLEE family with an additional
2X overhead in the worst case.

3.10. EVALUATION 59

Table 3.6 presents the running time of the different analysis stages. The Type-
Gen stage includes type inference and the detection of the quiescent periods. The
GraphGen stage represents graph generation, while the OverlayGen stage identifies
al potential overlays. Finally the Classificaton stage is the time it takes to perform
the final classification. Applications with limited heap usage finish within a matter
of seconds as expected. Once the heap usage increases, so does the analysis time,
especially for the TypeGen stage. This stage operates on raw traces and its execution
time is unaffected by the semantics of the heap objects. This is highlighted within
Lighttpd and Pachi, which make good use of heap memory, but few heap objects are
members of high-level data structures. For these applications the bulk of the anal-
ysis is performed within the first stage, after which all non-desirable heap objects
are purged from further analysis. Another particular application is Clang, where the
OverlayGen stage is significantly more costly than the rest. This behavior is due to
some heap objects featuring a large set of the pointer elements. Overlay identifica-
tion requires testing an exponential number of pointer combinations, but for most
data structures (except B-trees) the number of pointers is limited. Since we don’t
expect B-trees to come up often during analysis, this behavior can be considered an
outlier and not the general case. Finally, for applications with heavy data structure
usage, such as Tor and Wireshark, the execution time can increase to the range of
minutes, but the total analysis time is still only around 30 minutes. These execution
times suggest that the proposed methodology is well suited for the offline analysis of
complex applications. Further optimizations can also be applied to reduce the analy-
sis time within a production setting. For more detailed discussions about scalability,
we refer the reader to section 3.11.

3.10.3 System code

One of the proposed use cases for MEMPICK was to analyze low-level system code
for potentially vulnerable data structures. In this section we analyze the effective-
ness of MEMPICK when dealing with this application class. MEMPICK relies on
the PIN [71] framework for dynamic instrumentation, thus currently cannot analyze
kernel-space code. However this does not mean that the mechanics behind MEM-
PICK cannot be applicable to system code. To overcome this technical limitation
we leverage the FUSE project [126], which allows file system implementations to
reside in user-space. Two major file-system implementations NTFS-3g and ZFS-FUSE
are built on top of this framework on Linux. For this evaluation we choose two ad-
ditional projects,s3fs, which allows mounting buckets from the S3 online storage
service of Amazon and sshfs, which allows mounting remote folders via ssh.

Table 3.7 presents the overview of the results from MEMPICK when analyzing
these four systems..The format is.the same as the one used for the evaluation of
real-world applications. For these four systems no typing errors were observed, only

60 CHAPTER 3. MEMPICK

partition errors where small red-black trees were mistakenly classified as being AVL
trees. This type of error does not affect the ability of the reverse engineer to iden-
tify the underlying data structure since the results offer a comprehensive summary
of all partitions, including the right classification. One peculiar detail is the lack of
complex data structures for the two systems dealing with real file systems, NTFS-3g
and zFS-FUSE. No tree-like data structures related to inodes were discovered in the
case of these two systems. By examining the intermediate results, we discover that
MEMPICK correctly identifies the inode objects, but detects no direct pointer links
between them. This discovery was confirmed by examining the underlying source
code, which uses additional levels of indirection between inode objects. This pro-
gramming pattern does not match our initial definition of homogeneous data struc-
tures. Future work may look into the discovery of heterogeneous data structures
consisting of different object types. We conclude that MEMPICK was successful in
analyzing these four systems and shows great promise in handling system code.

3.11 Complexity Analysis

In this section we analyze the computational complexity of the algorithms within
MEMPICK, with the goal of proving that MEMPICK does not incur any hidden over-
head that would impact its scalability. Our main argument in favor of dynamic anal-
ysis for the purpose of data structure detection is the inherent accuracy of run-time
information that enables accuracy and scalability to coexist. To ensure that we meet
our proposed performance goals, we analyze all components of our proposed ap-
proach, both from a theoretical and practical perspective. The research question we
issue in this section is the following: “Is it possible to perform shape analysis using
the same asymptotic complexity it takes to run basic test-suites for the application?”.
This research question stems from our assumption: the reverse engineer is capable
of exercising the application with different inputs (as described in Section 3.2) and
that he has access to powerful compute resources like clouds. The hope is that once
the reverse engineer can execute the application itself, the analysis only involves a
constant overhead that is independent of the application size and complexity. This
constant overhead can be tackled by additional hardware resources if necessary. In
the following, we analyze the complexity for five aspects of MEMPICK: executing
the application, trace generation, type inference, graph generation and shape analy-
sis. During the analysis we will use the following notations:

¢ N denotes the number of instructions executed and

* M denotes the number of heap objects generated by the application

3.11. COMPLEXITY ANALYSIS 61

3.11.1 Executing the application

We perform the dynamic analysis in MEMPICK by instrumenting the application
under test and monitoring its behavior. This setup incurs two inherent sources of
complexity that we consider in this section: the overhead of the instrumentation
framework itself and the number of execution paths necessary to provide appropriate
coverage. We show that neither of these two components hinders the goal proposed
in our research question.

MEMPICK uses PIN as its instrumentation framework [71], which incurs a 4x
overhead on the SPECint 2000 benchmark. In conclusion, the framework does not
affect our complexity analysis, since our research question considers the native exe-
cution time as the baseline.

The second source of complexity we have to consider is the potential path explo-
sion required for application coverage. In theory, an exponential number of possible
execution paths exist for any application. We observed in Section 3.2) that full code
coverage is not necessary for the purposes of data structure discovery. The core
data structures of any application are used throughout the code, without concern for
concrete execution details (considering realistic inputs). This is especially true for
pointer-based data structures where life-times surpass function boundaries. Func-
tional coverage is the primary metric for the purpose of MEMPICK and is typically
provided by existing unit tests. While the size of unit tests can range up to several
hundred inputs, the number is always bound to ensure the ability to finish testing in
a reasonable time. Bounding the number of execution paths ensures that the asymp-
totic complexity metric is not affected, by our coverage requirements.

3.11.2 Trace generation

In this section we evaluate different techniques for monitoring and logging execu-
tion, to find an optimal solution that maintains the required linear complexity. MEM-
PICK generates traces as persistent and abstract representations of execution scenar-
ios. The traces allow repeated analysis without having to deal with non-determinism
during execution. They contain all events necessary for our analysis: heap object
allocation and deallocation and writes into heap objects. The traces also abstract
away low level details such as memory addresses into object identifiers to simplify
analysis.

From an algorithmic perspective, tracing requires the system to instrument the
individual instructions and generate short summaries whenever necessary. Whenever
instructions deal with heap addresses, we abstract those into object identifiers and
the corresponding offsets. Since an application may access various fields inside a
memory object, each having a different offset, we cannot use a simple hash table to
map addresses to object identifiers. The intuitive solution is to use an interval-tree
like structure, where every allocation represents an interval. A look-up operation
using any given memory address automatically results in both the object identifier

62 CHAPTER 3. MEMPICK

and offset. While this is an elegant solution to our problem, it does imply that for
each memory write we incur an O(logM) time look-up, where M is the number of
heap objects. Thus the overall complexity of tracing is increased to O(N x logM).
An alternative solution is to use pointer tracking similar to Howard [119], which
allows constant speed look-up for the root pointer of each memory operand. While
pointer tracking can introduce a significant execution overhead, it does not change
the asymptotic complexity itself. The overall tracing complexity thus remains O (N).

3.11.3 Type inference

In this section we look into the complexity of the type inference algorithm presented
in Section 3.5. In MEMPICK, type inference is the process of grouping objects
into equivalence classes, called types. These equivalence classes do not necessarily
correspond to the static types from source code. Each object is associated with a
single type, while each type features a set of objects corresponding to it. MEMPICK
leverages the definition of functional equivalence (as defined in Section 3.5) for this
association. Whenever two objects are observed to be functionally equivalent, their
types are merged. From an algorithmic perspective, this requires the two object
sets to be merged as well as individual object types to be updated, resulting in a
complexity linear with the smaller set size. Thus the worst case complexity occurs
when equal sized sets are merged in a hierarchical fashion as presented in Figure 3.6.
Considering the total number of objects to be M, this merging process operates with
a worst case complexity of O(M = logM). This is beyond the level of complexity
we desire for our algorithm. In practice we found the algorithm to be scalable,
thus we perform a more accurate complexity analysis to check for a potential over-
approximation in the previous results.

For a more pragmatic approach on complexity analysis, we will follow the pro-
gression starting from a newly created object. When this object is first used as an
operand for an instruction involved in data structure manipulation, its type is im-
mediately merged with all other previous operands of the same instruction. We
denote this new type as a first level type, as presented in Figure 3.6. Note, that ev-
ery other object using the same instruction for the first time, will also be added to
the same first level type. Thus, the potential number of first level types is bound by
the different instructions that manipulate the data structure itself. These instructions
are encapsulated within interface functions, and their numbers are directly propor-
tional. In practice we never observed more than 10 interface functions for any data
structure implementation. Since the type merging hierarchy from Figure 3.6 is in-
dependent for each individual data structure type, its height will be bound by the
constant number of interface functions for that given type. This observation reduces
the complexity of type merging to O(M).

The overall complexity of type inference also needs to consider the time it takes
to.inspect all instructions.in. the trace. file. However this is independent of the merg-
ing operations themselves from a complexity standpoint. The number of instructions

3.11. COMPLEXITY ANALYSIS 63

Figure 3.6: Visual representation of type merging process for objects of the same type. Objects
are initialized with first level types, based on the first instruction manipulating them. Subsequent
instructions trigger additional merge operations, generating new types. Finally all objects are
merged together into one final type.

in the trace also dominates the number of objects created, thus the total complexity
is maintained at O(N).

3.11.4 Graph generation

Now, we consider the complexity of maintaining a graph representation of the heap
in memory and generating periodic snapshots. Graph representation and storage is
a well studied research field, that offers a wide variety of alternatives, depending
on the problem requirements. In the case of MEMPICK, the graph contains a large
number of nodes, potentially up to M and is highly dynamic, with potentially O(N)
operations performed. MEMPICK employs adjacency lists for its internal represen-
tation, since matrix-based solutions are prohibitive due to the potential node count.
While the theoretical complexity of node and edge removal in adjacency lists is
O(F) (where E is the number of edges), we can bound the practical one by O(D)
where D is the maximum in/out-degree of each graph node.

This complexity is still beyond our requirements, thus we attempt to bound the
value of D in practice, using the constraints of our problem. Our graphs do not
represent generic shapes, but well formed data structures from within applications.
Each data structure node is a structure, which contains a fixed number of pointers,
that represent outgoing edges. In practice all the data structures we observed, except
B-trees, featured up to 12 incoming and outgoing edges. The B-tree family of data
structures can possibly contain up to thousands of pointers in each node. Even in this
corner-case, D can be considered a constant value, albeit a large one. In scenarios
where large B-trees may significantly impact performance, adjacency lists can be
replaced by hash tables. The latter trades space overhead for additional performance
guarantees. Thus we observe that choosing the appropriate graph representation

64 CHAPTER 3. MEMPICK

allows MEMPICK to maintain the graph in memory without incurring additional
asymptotic complexity.

Besides the in-memory representation, MEMPICK is also required to provide pe-
riodic graph snapshots at quiescent periods. While generating an individual snapshot
depends on the graph size (O(M + E)), the total number of quiescent periods is also
trace dependent (O(V)). Thus we observe that it is not scalable to generate all pos-
sible graph snapshots. To mitigate this issue, the system selects a random sample
containing K snapshots that are forwarded to graph analysis. The reverse engineer
can control this number, based on the level of confidence desired. While in theory
the accuracy of MEMPICK may be affected, in practice we did not observe such is-
sues. The evaluation in Section 3.10.2 was performed using up to 100 snapshots for
each data structure instance and none of the classification errors resulted from this
limitations.

Combining all components of graph generation results in a complexity of O(N +
K+(M+E)). The final formula is controlled by the value of K chosen by the reverse
engineer. Constant values ensure that the complexity is still within the desired O(N)
class. Our evaluation shows that detection accuracy is not affected by this decision,
but for the purpose of precise representation we will keep K as a variable for the rest
of the analysis.

3.11.5 Shape analysis

Finally, we analyze the complexity of the classification algorithm which operates
on the generated snapshots to produce the final results. This algorithm consists of
two components, namely overlay identification and rule-based classification of the
overlays.

In Section 3.7.1, we described the notion of minimal pointer sets which define
the possible overlays in a given data structure. Since this problem is analogous to
the maximal set and set cover problems, the potential number of sets can be consid-
ered exponential in the potential pointer count. MEMPICK validates each candidate
pointer set, by analyzing the connectivity in the K snapshots generated in the pre-
vious step. This process is performed in O(K * (M + E)) for each pointer set
highlighting the necessity to deal with the exponential set count. Previously we ob-
served that the number of potential pointers, D, is limited to a constant in practice,
thus ensuring a constant number of potential sets.

The final shape analysis requires MEMPICK to analyze the in/out degrees for the
discovered overlays. Classification itself is performed in a constant time, once the
statistics.are gathered for each snapshot. The resulting time complexity is O(K *
(M + E)), identical to the result for overlay detection.

3.12. LIMITATIONS AND FUTURE WORK 65

3.11.6 Summary of complexity analysis

In summary, by adding together all steps of MEMPICK, the total time complexity
of data structure detection is O(N + K * (M + E)). Our evaluation has shown
that choosing a reasonable constant number for K does not impact the accuracy of
MEMPICK regardless of the application under analysis. As such the time complexity
formula is simplified to O(N), since the trace size dominates both the potential
number of memory objects and pointers. Going back to our research question, we
have shown that it is possible to perform data structure detection using the same time
complexity required for regular application execution. This ensures the scalability of
our solution even for complex applications. While the constant overhead incurred is
not negligible, hardware and parallel execution may be used in the future to mitigate
it. Even now, the current implementation of MEMPICK finished the analysis of each
application from our evaluation (Section 3.10.2) within one hour on a 2.6 GHz dual-
core machine. This result and our complexity analysis proves that MEMPICK is
applicable for the overnight analysis of these application classes.

3.12 Limitations and Future Work

In this work we aim to detect and classify heap based data structures using shape
analysis applied to the memory graph. Applications use memory allocators to man-
age heap objects, a facility instrumented in MEMPICK to maintain an accurate rep-
resentation of the memory graph. While most applications employ system allocation
routines like malloc () or free(), some applications implement custom memory
allocators for performance benefits. In the latter scenario MEMPICK needs to be
made aware of the custom memory allocators in use by the application. While this
information is not readily available in stripped binaries, the approach by Chen et
al. [26] is straightforward to adapt for the requirements of MEMPICK.

The shape analysis of the memory graph in MEMPICK is based on a set of sim-
ple, but stringent rules geared towards edge counts. This classification mechanism
assumes the ability to discerning relevant and irrelevant edges in the memory graph
via some typing information. Our evaluation shows that the type inference engine
designed for MEMPICK can meet this requirement in practice, but some theoretical
corner cases still exist. Typeless pointers, unions or inner structs could confuse our
current solution in theory. For the future we propose the fusion of multiple typing
information sources, such as Howard [119] or static analyses [13; 108; 110] to limit
potential false positives.

In addition, we focus on data structures that can be classified based solely on
their shape, and not the contents or algorithms used to handle them. For example,
we cannot distinguish binary search trees from the generic binary trees.

A natural extension of MEMPICK is the functional analysis of data structures.
MEMPICK currently identifies.all the instructions involved in the internal opera-
tions of the data structure, but is unable to reason about them. The reverse engi-

66 CHAPTER 3. MEMPICK

neering value would be expanded by labeling the instructions with their functional
purpose(insertion, deletion). We believe that the existing shape analysis results sig-
nificantly reduce the space of possible operations, enabling a robust and intuitive
functional classification. This extension will allow reverse engineers to quickly iden-
tify code related to the known semantics of data structures and focus their attention
on application logic instead.

3.13 Related Work

Recovery of data structures is relevant to the fields of shape analysis and reverse
engineering. While shape analysis aims to prove properties of data structures (e.g.,
that a graph is acyclic), reverse engineering techniques observe how a binary uses
memory, and based on that identify properties of the underlying data structures. In
this section, we summarize the existing approaches and their relation to MEMPICK.

Shape analysis. Shape analysis [50; 112; 79; 17; 138] is a static analysis tech-
nique that discovers and verifies properties of linked, dynamically allocated data
structures. It is typically used at compile time to find software bugs or to verify
high-level correctness properties of programs. Although the method is powerful, it
is also provably undecidable, and so conservative. It has not been widely adopted.

Low-level data structure identification. The most common approaches to low-
level data structure detection, i.e., primitive types, structs or arrays, are based on
static analysis techniques like value set analysis [13], aggregate structure identi-
fication [108] and combinations thereof [110]. Some recent approaches such as
Rewards [86], Howard [119], and TIE [85], have resorted to dynamic analysis to
overcome the limitations of static analysis. Even though they achieve high accuracy,
they cannot provide any information about high-level data structures, such as lists or
trees. MEMPICK is thus complementary to them.

High-level data structure identification. The most relevant to our work are
approaches that dynamically detect high-level data structures, such as Raman et
al. [109], Laika [34], DDT [74], and White et al. [133].

Raman et al. [109] focus on profiling recursive data structures. The authors in-
troduce the notion of a shape graph, that tracks how a collection of objects of the
same type evolves throughout the execution. MEMPICK’s memory graph extends
the shape graphs to facilitate data structure detection, which is beyond the scope of
the profiler [109].

Laika [34] recovers data structures during execution. First, it identifies poten-
tial pointers in the memory dump—based on whether the contents of 4 byte words
look like a valid pointer—and then uses them to estimate object positions and sizes.
Initially, it assumes an object to start at the address pointed to and to end at the
next object in memory. It then converts the objects from raw bytes to sequences
of block types.(e.g.,-a.value that points into the heap is probably a pointer, a null
terminated sequence of ASCII characters is probably a string, and so on). Finally, it

3.13. RELATED WORK 67

detects similar objects by clustering objects with similar sequences of block types.
In this way, Laika detects lists and other abstract data types. However, the detection
is imprecise, and insufficient for debugging or reverse engineering. The authors are
aware of this and use Laika instead to estimate the similarity of malware. Similarly
to Laika, Polishchuk et al. [104], SigGraph [87], and MAS [35], are all concerned
with identifying data structures in memory dumps. However, they all rely on the
type related information or debug symbol tables.

White et al. [133] propose an alternative to shape analysis, by focusing the anal-
ysis on the patterns in data structure operations. They label instruction groups based
on the local changes observed in the pointer graph. Finally they merge the label
information from all instruction groups to form a final candidate classification. The
main issue with this approach lies in the complexity of the underlying model, which
requires a repository of manually defined templates to perform classification. The
authors also require source code access to extract typing information for the pointer
graph. Finally, their evaluation is limited to very simple applications which use a
single data structure internally. With MEMPICK we have shown that shape analysis
can provide the necessary accuracy, while benefiting from simple and intuitive mod-
els. While MEMPICK does not yet support the analysis of data structure operations,
we strongly believe, that the result of the shape analysis is highly valuable to limit
the search space of such analysis.

Guo et al. [59] propose an algorithm to dynamically infer abstract types. The
basic idea is that a run-time interaction among (primitive) values indicate that they
have the same type, so their abstract types are unified. This approach groups together
objects that are classified together, e.g., array indices, counts or memory addresses.
MEMPICK’s approach to type identification (Section 3.5) is less generic, but also
simpler and specifically tailored to our needs.

Currently, the most advanced approach to the data structure detection problem
is DDT [74]. DDT uses invariant information extracted using Daikon [43]. This
allows DDT to go beyond shape information and to refine its classification based
on content information. Unfortunately the same invariant detection also imposes
additional assumptions on the system, reducing its flexibility. For one, DDT relies
on well-structured detect interface functions which encapsulate all operations per-
formed on data structures. The distinction is very strict: the system assumes that an
application never accesses any links between heap objects, while the interface func-
tions never modify the contents they store in the data structures. Thus, the applica-
bility of DDT is limited when due to compiler optimizations, the interface functions
are inlined, their calling conventions do not follow the standard ones, or when a pro-
gram simply uses data structures defined with macros or some less strict interfaces
(e.g., queue.h). In the absence of inlining, DDT works well with popular and mature
libraries, such as the C++ Standard Template Library (STL) or the GNOME C-based
GLib, but it is unclear what accuracy it would achieve for custom implementations
of data structures. (let alone malware). MEMPICK does not make any assumptions
about the structure of the code implementing the operations on data structures, so

68 CHAPTER 3. MEMPICK

it has no problems analyzing applications that use queue.h, say. Additionally, DDT
does not address the problem of the auxiliary overlays in data structures. For each
data structure type, it relies on a graph invariant that summarizes its basic shape. For
example, one of the invariants specifies that “each node in a binary tree will contain
edges to at most two other nodes”. However, this assumption does not always hold
in practice.

3.14 Conclusion

In this paper, we presented MEMPICK, a set of techniques to detect complicated
pointer structures in stripped C/C++ binaries. MEMPICK works solely on the basis
of shape analysis. The drawback of such an approach is that it will only detect
data structures that can be distinguished by their shape. On the other hand, we
showed that MEMPICK is impervious to compiler optimizations such as inlining
and accurately detects the overall data structure even if it is composed of multiple
overlapping substructures. We evaluated MEMPICK first on a set of 16 common
libraries and then on a diverse set of ten real-world applications. In both cases, the
accuracy of the data structure detection was high, and the number of false positives
quite low. In conclusion, we believe that MEMPICK will be powerful tool in the
hands of reverse engineers.

Acknowledgment

This work is supported by the European Research Council through project ERC-
2010-StG 259108-ROSETTA, the EU FP7 SysSec Network of Excellence and by the
Microsoft Research PhD Scholarship Programme through the project MRL 2011-
049.

3.14. CONCLUSION 69

Table 3.5: MEMPICK’s evaluation across 10 real-world applications. #T is
the number of unique data structures belonging to the given type, #MT is
the number of type misclassifications, #P is the number of partitions
belonging to the given type, #MP is the number of partition
misclassification

Application Type #T #MT #P #MP
chromium slist 16 0 303 0
dlist 5 0 24 0
list of lists 1 1 8 8
n-ary tree 1 0 16 0
n-ary tree 1 0 2 0
slist + graph 1 0 169 2
graph 2 0 10 1
clang slist 3 1 5 1
dlist 5 0 8 0
RB tree 1 0 6 2
graph 4 0 13 0
inkscape slist 9 0 186 0
dlist 5 0 14 0
RB tree 1 0 7 4
tree of trees 1 0 5 0
n-ary tree 1 0 28 0
slist + graph 1 0 13 0
graph 1 0 1 0
lighttpd slist 2 0 2 0
dlist 1 0 1 0
binary tree 1 0 1 0
pachi n-ary tree 1 0 1 0
povray slist 9 0 36 0
dlist 3 0 66 2
RB tree 1 0 1 0
n-ary tree 1 0 17 0
n-ary tree 1 0 16 1
slist + graph 1 0 12 0
quagga slist 2 0 7 0
dlist 5 0 8 0
binary tree 1 0 4 2
tor slist 12 0 413 4
graph 1 0 1 0
wget slist 3 0 8 0
dlist 1 0 6 0
slist + graph 1 0 13 0
wireshark slist 3 0 99 0
dlist 1 0 1071 0
binary tree 1 0 1 0
n-ary tree 1 0 3 0
RB tree 1 0 95 47
AVL tree 1 0 2 0
slist + graph 1 0 12 0
graph 1 0 1 0

70

CHAPTER 3. MEMPICK

Table 3.6: MEMPICK’s analysis time evaluation across 10 real-world
applications. Averaged across 3 runs. Measured in seconds. TypeGen
includes the type inference and quiescent period detection. GraphGen
involves graph generation, while OverlayGen includes the overlay
identification. Classification includes the remaining classification steps to
get the final results.

Application TypeGen GraphGen OverlayGen Classification

chromium 2s <ls <ls 2s
clang 4s <lIs 178s 4s
inkscape 8s 4s Ss 9s
lighttpd 23s <ls <Is <lIs
pachi 21s <lIs <Is <Is
povray 38s 1s Is 4s
quagga <ls <ls <ls <ls
tor 848s 542s 42s 361s
wget 8s 4s Is 3s
wireshark 160s 1030s 247s 453s

Table 3.7: MEMPICK’s evaluation for the 4 FUSE-based file systems. #T is
the number of unique data structures belonging to the given type, #MT is
the number of type misclassifications, #P is the number of partitions
belonging to the given type, #MP is the number of partition
misclassification

Application Type #T #MT #P #MP
NTFS-3g slist 1 0 1 0
dlist 2 0 0
slist + graph 1 0 24 0
ZFS-FUSE slist 2 0 2 0
dlist 1 0 1199 0
s3fs slist 3 0 245 0
dlist 1 0 1 0
RB tree 1 0 62 37
n-ary tree 1 0 19 0
slist + graph 1 0 13 0
sshfs dlist 2 0 16 0

ShrinkWrap: VTable Protection without Loose Ends

Abstract

As VTable hijacking becomes the primary mode of exploitation against modern
browsers, protecting said VTables has recently become a prime research interest.
While multiple source- and binary-based solutions for protecting VTables have been
proposed already, we found that in practice they are too conservative, which allows
determined attackers to circumvent them. In this paper we delve into the design
of C++ VTables and match that knowledge against the now industry standard pro-
tection scheme of VTV. We propose an end-to-end design that significantly refines
VTV, to offer a provably optimal protection scheme. As we build on top of VTV, we
preserve all of its advantages in terms of software compatibility and overhead. Thus,
our proposed design comes “for free” for any user today. Besides the design we
propose a testing methodology, which can be used by future developers to validate
their implementations. We evaluated our protection scheme on Google Chrome and
show that no compatibility issues were introduced, while overhead is also unchanged
compared to the baseline of VTV.

71

<
N,
)
L
Q
©
L
®)

72 CHAPTER 4. SHRINKWRAP

4.1 Introduction

C++ is a popular, fast, object-oriented (OO) language used to develop some of the
most popular Web browsers, including Chrome and Mozilla. Due to their popu-
larity, size and complexity, applications developed in C++ are frequently targeted
by attackers. Despite advances in software security, like the introduction of data-
execution prevention [8], stack-smashing protection [33], and address-space layout
randomization [103], their exploitation is still possible. New techniques involving
information leaks [121] and return-oriented programming [116] are employed to by-
pass protection mechanisms and perform arbitrary code execution attacks.

One of the features of C++ applications targeted by attackers are virtual function
tables, or VIables. OO languages support run-time method binding, i.e., determining
the method to be called based on the run-time type of an object, instead of the static
type of the pointer pointing to that object. Modern compilers typically provide this
functionality through V7ables, which provide an efficient way to call the correct
method at run time. Unfortunately, VTables are based on indirect calls, which is
what makes them a prominent targets for hijacking the control flow of a program.

To prevent such control-hijacking attacks, the research community has turned to
control-flow integrity (CFI). First conceived in 2005 [3], CFI has seen a long line
of followers and variants since [139; 141; 99]. CFI strives to constrain the control
flow of a program to its statically-determined control-flow graph (CFG) as strictly
as possible. In principle, CFI can be very effective in preventing a wide-range of
attacks. In recent times however, we bear witness to a cat-and-mouse game, where
each new CFI technique is immediately attacked and bypassed. Earlier works have
shown that attackers can bypass loose CFI mechanisms [54], so follow-up works
tried to exploit source code information [99] and VTables semantics [72; 25; 9] to
make CFI more fine-grained. A very recent work has shown that the above ap-
proaches still leave programs vulnerable and argue that unless you correctly extract
C++ semantics from source code they will remain vulnerable in the future [113].

This paper aims to provide the final say on VTable protection, by tightly con-
straining virtual function pointers (vfp) to the VTables corresponding to the classes
intended by the programmer—as defined by the semantics of the C++ language. We
begin by examining a recent compiler-based CFI approach, namely VTV [127], and
evaluate it to determine whether its own vfp restrictions are accurate.! We proceed
by extending VTV to apply even tighter restrictions to the available VTable targets
and argue that our approach is optimal. More precisely, we aim at offering the best
protection possible to vfps in a context insensitive fashion. We build our solution
into VTV and evaluate it by means of a new framework for testing it. Using the
framework, we experimentally show that it is the strictest access policy possible for
VTables without breaking legitimate code. Last but not least, our solution is faster
than the original VTV implementation.

1VTV is now a standard compiler option also used in production systems.

4.1. INTRODUCTION 73

Our investigation exposes three weaknesses of existing schemes. First, we find
that existing solutions fail to precisely identify the object types associated with a
virtual call-site, even in the presence of source code. Second, we find that even
state-of-the-art solutions, like VTV, handle multiple inheritance over-permissively.
Normally, every class has its own VTable and base classes contain all the VTables
of their subclasses. When a class C' inherits from multiple classes, VTV extends
the VTables of its base classes to include, and thus share, all entries in their individ-
ual VTables. ILe., “sibling” classes share VTable entries. This is another example
where control-flow integrity is loosely enforced. Finally, we identify a fundamental
error in the assumptions made by other solutions. Previous approaches operate on
the premise that allowable control-flow transfers at call-sites (i.e., where a method
of an object is invoked) can be determined solely based on the type of the object
pointer involved. We show that this assumption is false and more information must
be extracted from the call-site to reach optimal protection.

We use our observations to design a new VTable-protection scheme that uses
information available during compilation to extract the most restrictive set of VTa-
bles that should accessible at a virtual call-site within the code. We implement this
enhanced, fine-grained design on top of VTV and evaluate it by creating a testing
framework that exhaustively explores all possible combinations of class inheritance
and method invocation to demonstrate that our technique provides the best possible
defense for VTables. We also experimentally test our approach by compiling and
running the Chrome Browser to demonstrate that our modifications do not break
complex, real-life applications. The evaluation of our prototype also shows that our
scheme is faster than the original VTV scheme.

We summarize our contributions below:

* We identify limitations in the design and implementation of current VTable
protection schemes, including the primary industrial implementation, VTV.
(Section 4.2.2)

* We identify key design decisions that should be accounted for, when dealing
with VTable protection. This also includes a definition of optimal (minimal)
VTables sets that should be accesible at each point in the program. (Sec-
tion 4.3)

* We develop a practical testing methodology to evaluate VTable protection
schemes and to highlight potential limitations.(Section 4.5.1)

* We implement a prototype of the proposed protection scheme and evaluate it
on.a large, complex real-world application, the Chrome, browser, in terms of
security and speed. (Section 4.5.2)

<
.
)
2
Q
©
K -
®)

74 CHAPTER 4. SHRINKWRAP

4.2 VTable Protection Today

In this section, we discuss VTables and their protection in current solution, as well
as the reasons why such defenses are not as tight as they should be.

4.2.1 C++ dynamic dispatching

Function polymorphism in object oriented languages like C++ needs a way to dy-
namically resolve the appropriate method implementation based on the dynamic type
of the object. For instance, if B and C' are subclasses of A, and both implement a
method £ (), we can initialize any reference to A with an object of either type B or
C'. However, when we now call the method £ (), we execute either B.£() or C.£ (),
depending on the dynamic type. The typical solution to this problem is to group all
methods of a particular class into a table of function pointers, called VTable in C++.
Subclasses extend the VTable of their base class with new entries for newly defined
methods, while previously defined methods feature updated function pointer entries.
During object construction, a pointer towards the appropriate VTable is stored within
the object. This object, together with the VTable it points to, allows the compiler to
select the appropriate polymorphic method variant, irrespective of the compile-time
type.

C++ also features complex inheritance strategies, such as multiple and virtual
inheritance, that affect VTable usage. For example, assume that class B simultane-
ously inherits from multiple base classes Al, A2, ..., An. The VTable of B can only
extend the VTable of the primary base class for B. Otherwise entries in the VTable
would have to overlap on the same offset. To allow using the class B in place of all
of its parents, secondary VTables are associated with it, corresponding to each non-
primary base. These secondary VTables are also inherited in all of the subclasses of
B. Virtual inheritance is a necessary side-effect of supporting multiple inheritance.
The latter allows the same base class to be inherited multiple times via different in-
heritance chains. This is potentially undesirable behavior. Virtual inheritance solves
the problem, by ensuring that a given base class is inherited a single time in any
further subclasses. Virtually inherited base classes also trigger the generation of
their own secondary VTables to be used when accessing methods from this particu-
lar base. For more details about VTable interaction with inheritance, the reader can
refer to the C++ ABI documentation [1].

While each compiler generates its own code for supporting VTables, a common
approach is to store at the beginning of an allocated object a pointer to the object’s
VTable. Normally, VTables themselves are stored in read-only memory to prevent
tampering by attackers. However, C++ objects can be allocated on the stack and the
heap, which are both writable. Therefore, the pointer that points to the VTable can be
overwritten by leveraging a software bug (like a buffer overflows or user-after-free
bug [5]), for instance to make it point to VTable-like data the attacker controls.

4.2. VTABLE PROTECTION TODAY 75

4.2.2 VTable integrity and limitations

It is evident that protecting VTable pointers will make software exploitation dra-
matically harder. As a result, recent security conferences abound with publica-
tions on how to protect VTables. Although all these proposals apply some notion
of CFI, some are VTable-agnostic [139; 141], while others target VTables specifi-
cally [127; 72; 25; 9]. In the following we focus on the second category, as their
understanding of VTable semantics allows the protection to be more refined than
generic approaches.

Since all recent VTable protection schemes [127; 72; 25; 9] share a similar
architecture, we map them onto the following model to analyze their strengths and
weaknesses.

1. Statically search for VTable based call-sites.

2. Statically generate VTable sets that could be associated with each class/call-
site.

3. Statically identify the class type used at each call-site.

4. Enforce that run-time VTables are part of the statically inferred set at each
call-site.

In short, each protection scheme aims to associate a set of valid VTables to each
particular call-site. By enforcing that the run-time VTable belongs to the statically
generated set, it aims to limit the influence of the attacker on the control-flow. The
sets should contain all possible VTables that could be used at the given call-site.
In order to avoid having a new set for every call-site in the program, the sets are
typically grouped together, based on type information. The intuition is that call-sites
with the same static object type have access to the same VTables.

Recent binary- and source-based solutions have been successful at solving the
first and fourth points in this model, and we do not cover them much in this paper.
Instead, we focus on the second and third points, where we identified limitations in
all existing solutions.

Generating VTable sets

VTable sets contain all VTables that a particular call-site can legitimately target. The
best way to generate them is through analyzing the class hierarchy, since it defines
how valid C++ code interacts with VTables.

Binary level Current binary based approaches are limited by the information that
they can extract for a particular call-site. Since type information is unavailable in
closed-source programs, binary protection schemes cannot differentiate between the
legitimate targets for different call-sites. As a result, they typically use a single
VTable set that contains all VTables accumulated from the binary. While this stops
many.existing_exploits,.attackers are still able to corrupt the program flow. For
example, a call-site calling a virtual method of 0 arguments can be used to call into

<
.
)
2
Q
©
K -
®)

76 CHAPTER 4. SHRINKWRAP

a method with 3 arguments. Attackers can exploit this pattern to perform stack
pivoting on Windows based systems as shown by Goktas et al. [S4]. Prakash et
al. [9] try to extract limited semantics from the call-site to support more specialized
VTable sets. However, the authors admit that even their advanced policies lead to
VTable sets being larger by a factor of 2X, compared to the existing source-based
VTable protection in GCC.

Source level VTV [127] takes a class-based approach for generating the sets. It as-
sociates a VTable set with each class which includes all its VTables and the VTables
of its subclasses. This is intuitive, as all subclasses can be used at the call-sites of
their base classes. SafeDispatch [72] provides two alternatives for generated VTa-
bles: (a) the VTV scheme, and (b) method-based VTable sets. In case of the latter
each virtual method is associated with a VTable set of its own, based on method
overloading in the subclasses. Although this alternative reduces the run-time over-
head, according to the authors it is weaker or equivalent to the VTV approach and
we will not focus on it in the remainder of this paper.

While VTV’s solution of adding all VTables of subclasses to the set is intuitive
at first glance, it fails to arrive at the right set in case of multiple inheritance. In
this case,classes inherit completely unrelated functionalities using multiple unrelated
VTables. Code at the call-site assumes that the appropriate casting mechanisms
have been applied to select the desired VTable of the object before making the call.
However, VTV allows attackers to inject a different (and mismatching) VTable of the
same class at the call-site, undermining its semantics. We present the security impact
of this limitation on the Chrome browser in Section 4.5.2 (with callsites erroneously
giving access to thousands of VTables).

In this paper we propose an in-depth analysis of class hierarchies and VTable
generation policies. Based on the analysis, we then propose a VTable set generation
policy, which does not suffer from false positives and still supports all valid C++
semantics (Section 4.3.2).

Call-site type inference

While this step is typically left as an implementation detail in previous papers [127;
72; 25; 9], we believe that it should be an integral part of the design and evaluation
of VTable protection. Since type inference is the key for associating call-sites with
particular VTable sets, this component has a direct influence on the number of al-
lowable VTables. Even if the VTable sets are generated to be optimal, it is enough
to associate the wrong (overly conservative) set at a particular call-site to increase
the attack surface. For example, imagine a class hierarchy, similar to Java with a
common root class Object. Since all other classes are based on Object, conser-
vatively associating a call-site with the root class allows an attacker to use of all
VTables within the system, which can lead to a significant and undesirable attack
surface increase.

Since type inference is still very difficult to perform at the level of binaries, most

4.3. SHRINKWRAPPING THE VTABLES 77

binary solutions forego call-site type inference entirely and limit themselves to a
single VTable set that they associate with each call-site. As mentioned before, doing
so allows attackers to leverage all VTables within the system at every virtual call-site,
which might be enough for future exploits.

We expected source based solutions to have solved the problem of type inference
completely, as they have access to the underlying code, but this turned out to be
wrong. For instance, VTV [127] turns out to be overly conservative in this stage,
and as a result not nearly as effective in validating VTable pointers as it could be.
Specifically, we observed that, in the case of multiple and virtual inheritance, the
type inference scheme in VTV is prone to associate call-sites with base classes of
the type specified in the source. We discuss the problem of precise call-site type
inference in detail and provide a compiler-agnostic solution in Section 4.3.1.

4.3 ShrinkWrapping the VTables

4.3.1 Precise call-site type inference

As precise VTable protection relies on associating the appropriate VTable set with
each call-site, call-site type inference is crucial. If type inference is too conservative,
the call-site might be associated with a super-class instead, allowing the use of VTa-
bles with no relationship to the given call-site. We found that VTV [127], currently
the state-of-the-art in VTable protection, suffers from overly conservative type in-
ference and later in Section 4.5.2, we highlight the impact of VTV’s conservative
nature when protecting call-sites in complex programs like Google Chrome. In the
following we analyze the root cause of type inference issues within GCC. We also
map our observations to other compiler frameworks to suggest a generic design for
future VTable protection implementations.

The source of the conservativeness stems from the fact that the core of a typical
C/C++ compiler is built to handle a wide range of language front-ends, and thus
oblivious to language specific features, such as C++ VTables. It is the responsibility
of the C++ front-end to transform VTable-based method calls into traditional calls.
This process involves implicitly casting the object to its base class which explicitly
implements the desired method. When performing instrumentation within the core
of the compiler, this pattern is impossible to separate from explicit casts and field
accesses. For example, in Figure 4.1 a call-site using a pointer of type C accessing
a virtual method inherited from B will be associated with type B or even A2 due to a
bug in the VTV implementation. This inherently enables access to a larger number
of VTables than desired by the programmer. We discovered these issues, while ana-
lyzing the code in GCC, but the problem applies to most compiler frameworks. For
example, the core of Clang uses the language agnostic LLVM intermediate represen-
tation, which also lacks type information for virtual method call-sites as mentioned
by.Jang et. al. [72]. Likewise, the Microsoft compiler also uses separate language-
specific front-ends C1 (C) and C1XX (C++) to parse the code and transform it into

<
.
)
2
Q
©
K -
®)

78 CHAPTER 4. SHRINKWRAP

an intermediate representation processed by the C2 back-end, and while compiler
internals are not known, it seems likely that it loses virtual method semantics at the
level of the back-end as a result of normalization with raw C code. With this anal-
ysis we hope to draw attention to the issue of type inference in C++, so that future
VTable defenses (regardless of the targeted compiler) will use precise call-site type
inference.

As a baseline solution, we propose using the earliest possible stage within the
C++ front-end and parser to perform type inference, and propagate the information
to the instrumentation code via internal compiler annotations. This allows the in-
strumentation to reside either in the front-end or the core of the compiler, without
affecting the precision of type inference. In our setup we annotate the access to the
VTable pointer itself (as it is generated in the front-end) and transform the annotation
into a VTable check at instrumentation time. It is even possible to include further
analysis in the compiler to infer a more restrictive type to associate with the call-site
based the static pointer-tracking, but we leave this up for future work.

4.3.2 Legitimate VTable targets

As described in Section 4.2.2, VTV [127] uses a coarse definition of allowable
VTable sets for each call-site. If class B is a sub-class of A, then all virtual call-
sites using the latter type are allowed to use any of the VTables found within B.
However, Section 4.2.1 showed that multiple and virtual inheritance can result in
classes having a large range of VTables. In this case some of the VTables in class B
are not inherited from A, and should thus be inaccessible at a call-site using type A.
In Section 6.9, we show that VTV inadvertently allows some call sites in the Chrome
browser access to thousands of VTables. We introduce a pair of concepts to model
the relationships between VTables: the type of a VTable and the parent relationship
between a pair of VTables. They form the basis for generating provably optimal
VTable sets for each call-site.

Concepts First, we define the fype of a VTable to be the base class of the object
responsible for triggering the generation of this particular VTable. For example, the
primary VTable of a class has the same type as the class. In the case of multiple in-
heritance, every secondary base (including inherited ones) generates its own VTable,
with the given class as its type. An example of the type association is presented in
Figure 4.1. Second, we define a parent relationship between VTables of different
classes.
A VTable X in class A is a parent of VTable Y from class B if and only if:

e A==B or class A is a base class of class B.
e VTable Y is inherited from class A.

e VTable Y matches or extends VTable X.

4.3. SHRINKWRAPPING THE VTABLES 79

Figure 4.1: Example class hierarchy. The classes are represented by circles. The solid arrows
show parent relationships between classes, the thicker ones signaling the primary parent. The
VTables of each class are represented by the rectangles next to it. The dashed arrows signal the
class from which a particular VTable was inherited. The text in each rectangle is the type
associated with the corresponding VTable, based on the inheritance.

Analogously VTable Y is a descendant of VTable X if VTable X is a parent of VTable
Y.

VTable extension is defined in C++ as generating a new VTable that starts out
with the same layout as the original one, but with additional entries appended.
VTable extension allows efficient type-casting without the need of generating ad-
ditional VTables. An extended VTable can always be used in place of the original,
as the relevant part matches in layout.

To identify when a VTable extends another, we take a look at inheritance rules
for both multiple and virtual inheritance. The primary VTable of a class always
extends the primary VTable of its first non-virtual base class. Extension continues
transitively as long as non-virtual inheritance is involved. The example in Figure 4.2
shows the parent relationships between the VTables introduced in Figure 4.1. Be-
cause class A2 is the primary base class of B, its VTable is extended as the primary
VTable of B, leading to a parent relationship between the two VTables.

In case of virtual inheritance things get more complicated. Virtual base classes
are only inherited once in sub-classes. As a result the VTable of this base is only
extended a single time, even in the face of diamond inheritance as presented in Fig-
ure 4.3. While the VTables of both B1 and B2 extend the VTable of A, this property is
not transitively propagated into the sub-class C, only the primary VTable of C extends
the one inherited from A. In the second VTable of class C the entries corresponding
to A are eliminated from the VTable. As a result, in the face of virtual inheritance,
explicit analysis of the VTable content is necessary to identify extension between
two VTables.

Usage Based on this definition of the parent relationship, it is intuitive that only
descendant VTables can be used in place of their parents at any particular virtual
method call-site. The layouts of the descendants always match the layout expected
at the call-site, resulting in a successful method invocation. Any VTable which is
not.a.descendant. should.not. be. allowed at the call-site, as it was either inherited
from a different, unrelated base class, or its layout does not match the expectations

<
.
)
2
Q
©
K -
®)

80 CHAPTER 4. SHRINKWRAP

A1 _» A2 A3

A ,z’ /’ ,/’ A

1 AT p Tl ylo- ,

1 1

o | B A3 /

\ A S U /7

N SN
......... e,

Figure 4.2: Visualization of the parent relationship of VTables for the class hierarchy from
Figure 4.1. This figure leaves out the classes, preserving only the VTables. The dashed arrows
represent the parent relationship between two VTables. The VTable in A2 is a parent for both
VTables of type B, since A2 is the primary parent of B, and the primary VTables of the latter is an
extension of the VTable inherited from A2. The same between the VTable of type C and A1l.

at the call-site. These properties make the parent relationship the perfect basis for
generating allowable VTable sets, based on C++ class semantics.

4.4 Stronger VTable Protection

We introduce stronger VTable protection through (i) a simple extension to VTV, and
(ii) an optimal solution.

4.4.1 An extensionto VTV

As a first step toward better security, we use the concepts presented above to redefine
the restrictions enforced by VTV [127] and increase the strictness of its protection.
The existing implementation traverses the class hierarchy at compile-time to identify
targeted VTable sets for each class within the system. We extend this mechanism by
a set of additional restrictions to limit the contents of this set further, while main-
taining full compatibility with all C++ semantics.

We propose the following simple policy for VTable sets at a call-site correspond-
ing to a particular class:

* All VTables of the class are part of the set.
* All descendant VTables of the above are also part of the set.

This policy ensures that VTables in the sub-classes, with no relation to the given
class, are never added to the set.

Implementing the policy is straightforward, only requiring information about
VTable type and parent relationships. These are extracted from the class hierarchy,
based on their definition from above. As with the call-site type inference, we believe
that the proper.testing methodology. would have highlighted the limitations of the
existing design earlier in the development process.

4.4. STRONGER VTABLE PROTECTION 81

Figure 4.3: Example of diamond virtual-inheritance, where by courtesy of the virtual inheritance
only a single copy of the top class (A) is inherited within C. While the primary VTable of class B2
does include all entries corresponding to parent A, when this VTable is inherited into C, the entries
are cleared out. Irrelevant of the type-casting chain used to convert an object of type C into type
A, the primary VTable of C will always be used to access the corresponding methods. The parent
relationship follows this semantic, since only one of the VTables within class C has the primary
VTable of A as its parent.

4.4.2 Optimal VTable protection

While the previous solution is intuitively strong, it is limited by a core design deci-
sion, common to both VTV [127] and SafeDispatch [72]. Both these papers assume
that VTable-level protection is based on a single piece of type information, particu-
lar to the call-site. In contrast, when a call is performed using a virtual method, the
compiler knows two things: the type of the object on which the method is called, and
the particular VTable of this object, where the method can be found (represented by
the type of the VTable for example). When limiting the protection scheme to a single
type being associated with the call-site, information is inadvertently lost, degrading
the precision of the protection. We propose leveraging both pieces of information,
which enables a fine-grained and provably optimal VTable protection scheme. The
new design is defined as follows:

 Each call-site is represented using a class-type and VTable pair.
» The set is initialized with only the call-site VTable.
* All descendant VTables of the above are also added to the set.

This scheme is optimal, since the VTable sets only include the entries mandated by
the C++ semantics. This is guaranteed by the definition of the parent relationship
from Section 4.3.2. Every entry from in the set can potentially be used at the call-
site, via a valid type-casting chain. Figure 4.4 shows a comparison between the
original VTV, the extension we presented in Section 4.4.1 and our new fine-grained
solution (see Section 6.9 for a quantitative analysis).

Implementation-wise this new scheme can also be added on top of VTV, while
preserving much of the core code intact. Call-site type inference needs to be ex-
tended to also provide information about the VTable in use, while the VTable sets
are also kept track of with finer granularity. The end result is a slight increase in
the code size to support the newly defined additional VTable sets. Notice that this
policy.results.in smaller individual set sizes, which leads to a reduction in run-time
overhead.

<
.
)
2
Q
©
K -
®)

82 CHAPTER 4. SHRINKWRAP

A3 *ag; ...; a3->f_A3();
[A1][A2](A3]) |[|A1]]|A2](A3

N—

[A1] [A2](A3

Le][as}

VIV | Extended VTV | Fine-grained
[A1][A2] |A3] [A1][A2]]|A3] [A1] [A2]]A3]

(Ellzp | [e))

N—

(23) | [cl[Bl(ash

)
ﬂb:
(V)
A

T L T

Extended VTV Fine-grained |
B *b; ...; b->f_A3();

Figure 4.4: Example of VTable sets for two particular call-sites. The class hierarchy is reused
from Figure 4.1. Each class defines a function f_className, while it does not overload any of its
parents. The red circles are used to highlight the VTables added to the set accessible at the
particular call-site for each protection scheme. The top row shows the VTables sets associated
with a call-site of type A3 using method f_A3. In case of the original VTV all VTables of all
descendants of A3 are added to the set, including VTables inherited from A7 and A2. The
extended VTV ensures that only the VTables generated due to A3 are part of the set. For this
call-site there is no difference between the extended and the fine-grained versions. The second
call-site involves the type B, but the same method f_A3. The original VTV shows the same
problem as before, but in this instance even the extended version is not optimal. Since the call-site
cannot differentiate between the two VTables of B, both of them and their descendants need to be
added to the set. By using the fine-grained approach, we identify that the call-site leverages the
second VTable of B specifically. Thus we only add this particular VTable its descendant to the set.

Besides being an optimal VTable protection policy, fine-grained verification also
has the advantage of offering guaranteed protection for VTable-based call-sites. In
the case of VTV, it is still possible to call functions unrelated to the current call-
sites, or to use VTable offsets that overflow the VTable in use (as highlighted in
Section 4.5.2). Fine-grained protection guarantees by design, that the selected offset
is always valid within all accessible VTables (since the layouts match). Further-
more, the function pointer at the offset always refers to the method specified in the
source code or one of its overloaded variants. This means that attackers are unable
to take advantage of mismatches in function prototypes or argument usage to further
corrupt the program flow. All potential targets are also theoretically valid at the par-
ticular call-site, thus it is the responsibility of the programmer to design the methods
with compatible semantics.. While this does not stop all exploitation attempts against
the program, it does eliminate the use of VTable-based call-sites as control-flow hi-

4.5. EVALUATION 83

jacking targets. Since these represent 90% of all indirect call-sites in modern C++
programs [127] the vulnerability surface is reduced significantly, while maintaining
overhead low enough to be acceptable by software development companies. We be-
lieve that other vulnerability vectors should also be protected using similar defenses
focusing on the underlying semantics, instead of generic, coarse-grained protection
mechanisms.

4.5 Evaluation

4.5.1 Microbenchmark evaluating correctness

The complexities of VTable inheritance policies within C++ make it difficult to guar-
antee a correct implementation using only a simple intuitive design. Thus we pro-
pose using a custom-designed microbenchmark to prove correctness in both the pro-
posed and future VTable protection mechanisms. The point of the microbenchmark
is to cover all inheritance scenarios as well as call-sites to ensure that the VTable pro-
tection implementation does not break valid C++ semantics, while also not including
unneeded VTables in the corresponding sets.

We design the microbenchmark to cover all valid class hierarchies, including
combinations of multiple and virtual inheritance. Since class hierarchies can have
infinite size in theory and the possible number of class inheritance combinations
increases exponentially, we define some practical limits to the class hierarchies we
generate. The first limit is the maximum number of classes included in the hierarchy.
The second option is the maximum number of base classes. Given these limits we
generate every possible class hierarchy and include it in a source file of its own.
These files make up the microbenchmark for evaluating the correctness and precision
of VTable protection.

In order to trigger the use of all potential VTables, we create objects correspond-
ing to each class and cast these objects to all possible valid dynamic casting targets.
Finally we introduce VTable based call-sites for each of the cast results. The bench-
mark is evaluated along 3 axes: (i) precision of call-site type inference, (ii) correct
execution with respect to C++ semantics, and (iii) optimality of VTable set content.

The call-site type inference is validated by statically analyzing the binary gener-
ated for each set. All VTable verification calls within a testing function correspond-
ing to class X should only use VTable sets associated with X. This is defined by the
program logic, which specifies that the argument points to a valid object of type X.
Any outliers to this rule raises an error in the benchmark to signal that type infer-
ence is overly conservative. Correct execution is checked by running all binaries
and monitoring that VTable verification does not raise errors for any combination of
run-time object and call-site.

While previous papers considered enough the binaries to execute successfully,
with. ShrinkWrap. we aim. for optimal VTable sets. Thus we also evaluate if none
of the VTable sets include unused entries. By construction, the microbenchmark

<
.
)
2
Q
©
K -
®)

84 CHAPTER 4. SHRINKWRAP

covers all combinations of objects and call-sites that may occur within valid and
semantically correct C++ code. This property of completeness allows us to identify
unused entries in the VTable sets correctly and to report them. A VTable protection
is only considered correct and optimal if it is capable of running the benchmark
successfully, while reporting no unused entries in its VTable sets.

The existing implementation of VIV [127] in GCC 4.9.2 fails the microbench-
mark both in terms of call-site type inference, as well as the optimality of the VTable
sets. Our proposed redesign of call-site type inference fixes the first problem, but
only fine-grained VTable set generation is capable of passing all three aspects of
our benchmark. This means that our proposed solution not only supports full C++
semantics, but it is optimal in terms of the VTable set contents. We found the
benchmark incredibly valuable during the implementation process to identify corner-
cases within the C++ standard. We have observed several instances, where Google
Chrome would execute correctly with a particular implementation variant, while the
benchmark would fail. As a result of our experiences, we highly recommend that
all future research on VTable protection leverages this benchmark or a similar one.
This will ensure that theoretical solutions are backed up by a correct implementation
making the solutions sound in face of a determined attacker. To facilitate this aspect,
we will make our micro-benchmark public as open-source code.

4.5.2 Chrome
Building Chrome with VTable protection

While building Chrome with precise call-site type inference, we noticed that VTable
verification fails in a single place within the Skia library for the Chrome version
we wanted to test. The particular fragment of code was eliminated in a later ver-
sion, using the patch with identifier 76f5cc6e9e87(f247c3ef1f4b3fb03668db06e2e,
as it was deemed unnecessary and restricting the class hierarchy. For the evaluation
we changed two lines of code to eliminate the artifact without affecting run-time
behavior. The code itself is a classic case of benign type confusion, where a base
class is statically casted into one of it’s sub-classes, when it truly is just an object of
the base class. The code does not crash with current compilers as the layout of the
objects stays identical from a VTable perspective, since the sub-class does not im-
plement any new methods. The cast operation is still invalid considering high-level
C++ semantics and should be avoided in clean code.

We compiled the Chrome browser (version 42.0.2305.0, 64 bit) without VTable
protection, with the original VTV and with the proposed enhancements deployed in
multiple stages. This resulted in the following variants used throughout the evalua-
tion:

* Original: VTV as it is implemented in GCC 4.9.2.

o Call-site: Applying precise.call-site type inference to “Original” (described
in4.3.1).

4.5. EVALUATION 85

0-2 Original
Callsite
0.15 Extended
Finegrained
LDL
5 od
o
.05 |
0
1 10 100 10000

Accessible VTables

Figure 4.5: Complementary cumulative distribution function between the number of call-sites and
the number of VTables they allow. The X-axis represents the number of VTables allowed at a
call-site. The Y-axis represents the number of call-sites that use more than the given number of
VTables.

» Extended: The proposed extension to VTV filtering on top of “Call-site” (de-
scribed in 4.4.1).

* Fine-grained: The proposed fine-grained filtering scheme on top of “Call-site”
(described in 4.4.2).

We plan to release all of these variants as patches to GCC 4.9.2, which will
hopefully help developers to swiftly integrate the changes into the main development
tree. Having the code as open-source will also allow other researchers to scrutinize
our work in the future.

Security evaluation

The security evaluation of the original VTV and the different proposed enhance-
ments is performed along two axes. The first is the size of the VTable sets allowed
at each of the virtual call-sites within the program. The lower this number is, the
smaller the control an attacker can exhibit when corrupting a VTable pointer. This
simple metric for both source- and binary-based solutions, allows for easy compar-
isons against existing and future systems. For example, Prakash et. al. [9] also use
this metric to evaluate their solution, vfGuard. The main issue with this metric is
the lack of a proper baseline, since C++ semantics require that virtual call-sites al-
low a set of VTables based on the class hierarchy. To the best of our knowledge,
ShrinkWrap is the first work to extract these sets precisely from the source code.

In an attempt to provide an alternative baseline, we propose a second metric
focused on functional semantics instead of raw VTables. At each virtual call-site
we analyze the set of methods accessible via the set of VTables allowed within the
protection scheme. Instead of counting the addresses, we count the number of unique
method names that we encounter at each virtual call-site. Destructors are all counted
as.a single method name.. A method name encompasses a group of polymorphic
methods with compatible semantics. The intuition is that within the source every

<
.
)
2
Q
©
K -
®)

86 CHAPTER 4. SHRINKWRAP

0.4

Original VTV~ +
Callsite VTV
Extended VTV =~

0.35

0.3

0.25 *

0.2 *

CCDF

0.15

0.1 .

0.05

5 i
*
*
X %
*
0 L L o PRRRRRKRR R R I ™

1 10 100 1000
Targets: functions with different signatures

Figure 4.6: Complementary cumulative distribution function between the number of call-sites and
the number of methods (by name) they can target. The X-axis represents the number of methods
(by name) that a call-site can target. The Y-axis represents the number of call-sites that use more
than the given number of methods (by name).

virtual call-site is specific to a given method name as specified by the developer.
Precise VTable protection scheme is expected to enforce this property, otherwise an
attacker can gain significant leverage, by diverting the control-flow to an unexpected
method body, different from the one specified in the source code. This mechanism
has been used [54; 55] for establishing the initial control over the return address,
thus we consider it a serious threat to security.

The analysis corresponding to these two metrics are depicted in Figure 4.5 and
Figure 4.6. One key observation is that around 2.5% of call-sites allow access to
> 2500 VTables (> 7.5% of all VTables in Chrome). While the percentages are
not impressive at first sight, one has to take into account the size of the Chrome
binary (without VTV) used for these evaluations being 115MB in size after symbols
are removed. This number suggests that an attack similar to the one presented by
Schuster et. al. [113] might still be viable in the presence of VTV. The latter showed
that main-loop gadgets were found in binaries as small as 1IMB in size, which is
smaller than 2.5% of the Chrome binary that we observe as being highly dangerous.
The paper.also.claims that the other gadgets were successfully found within binaries
smaller than 20MB. In the case of VTV, 7.5% of Chrome corresponds to somewhat

4.5. EVALUATION 87

SetRemoteSSRCType (int ,webrtc::StreamType ,unsigned int)
SetFECStatus (int ,bool ,unsigned char ,unsigned char)
RegisterObserver (int ,webrtc::ViECaptureObserver&)

StartRender (int)

DeregisterEncoderObserver (int)

LastError ()

ReceivedBWEPacket(int,long,unsigned long,webrtc::RTPHeaderconst&)

Figure 4.7: List of methods that an attacker can target at a particular call-site within Chrome.
Even with the Original VTV enabled, the attacker can redirect execution to any of these 7 families
of methods.

less code, but still within the same magnitude. These results suggest that VTV can
be susceptible to the attack or a future variant of it.

Another point of concern is the large number of polymorphic method families
accessible at each call-site, when using the existing implementation of VTV. More
than 17% of call-sites allows attackers to target at least 10 different method families.
In Figure 4.7 we present a concrete example to show the wide range of semantics
accessible to an attacker at one such call-site. Some call-sites go as far as to allow
access to more than 300 different method families, which is a significant attack sur-
face, with potential to be exploited by resourceful adversaries. Figure 4.8 highlights
an example of a class hierarchy, inspired by complex C++ projects, where an attacker
can change the call-site’s semantics for performing undesirable functionalities while
original VTV is in place.

Precise call-site type inference has a significant impact on both metric, reducing
the average number of VTables and methods accessible at call-sites, however it still
suffers from corner-cases that could potentially become vulnerable in the future, e.g.
around 6% of call-sites still allow access to 10 different method families or more.
The Extended variant comes close to achieving the desired strictness according the
method count metric, but it comes short in a small set of corner-cases. Fine-grained
VTV is not shown in Figure 4.6 as all call-sites restrict access to a single method
family, as desired when deploying strict VTable protection. The average VTable set
size is also reduced to 27 compared to the average of 146 with the original VTV. This
result is key to point out for binary-based VTable protection schemes that currently
compare against VTV as a reference solution (such as [9]).

Performance overhead

Besides the security evaluation, it is also important to ensure that the proposed en-
hancements do not affect the low overhead offered by the original VTV implemen-
tation [127]. We evaluate the overhead imposed by the different variants using the
Chrome browser. Our testbed is an HP Z230 i7-4770 3.4 GHz machine running
Ubuntu Linux.12.04.5 with. ASLR and turbo mode off to reduce the possible noise
during the measurements. We compiled the Chrome browser (version 42.0.2305.0,

<
.
)
2
Q
©
K -
®)

88 CHAPTER 4. SHRINKWRAP

// Compile with GCC 4.9.2 VTV enable
// g++ -fvtable-verify=std -mpreferred-stack-boundary=2 -m32
#include <unistd.h>
#include <stdlib.h>
struct RefCounted {
virtual void addRef () {}
virtual void delRef () {} };
struct Logged {
virtual void log() {} };
struct ProcessWrapper : virtual Logged, virtual RefCounted {
virtual void run(char *path) {
execlp(path, path, NULL);
LA
int main(int argc, char #*x argv) {
// --Original Object Pointer--
RefCounted *ptr = new RefCounted();

// --Memory Corruption--
ptr = (RefCounted*)(void*) (new ProcessWrapper ());
__asm__("push %0\n"::"r"("1ls"));

// --Hijacked Call-Site--
ptr->delRef (); }

Figure 4.8: Proof-of-concept attack against VTV. An attacker corrupts an object pointer on the
stack, changing its target to a subclass. The call-site for delRef will use the wrong VTable from
within ProcessWrapper, since the appropriate up-casting is missing during the corruption. The
call-site will redirect to the run method, taking the last stack entry as its argument (the string "Is”
set up by the attacker).

64 bit) with the default release configuration as well as with the different variants of
VTable protection added to the configuration. We evaluated performance across a
series of popular browser benchmarks. Every benchmark is executed 10 times and
with the average being taken as the final value. The results are depicted in Figure 4.9
and, as expected, the fine-grained VTV, the scheme we propose in this paper, per-
forms better than the other variant of VTV. This mainly stems from the fact that
the available targets at virtual call-sites are reduced the most in fine-grained VTV.
Therefore, we stress that our proposal does not sacrifice performance for better se-
curity, but, instead, it is better in both performance and security, compared to the
original VTV.

4.6 Related Work

Protecting return addresses stored on the stack [33] and support of non-executable
data by many hardware processors and operating systems have raised the bar in soft-
ware exploitation. Attackers have no way to inject code anymore, and they have to
reuse existing code [116] by combining multiple bugs (one for taking control and
one for leaking the process layout [121] for overcoming randomization [103]). So-
phisticated exploits appeared and drove the community to seek a generic principle
that could eventually offer sound protection for software, namely Control-Flow In-
tegrity (CFI) [3].

4.7. CONCLUSION 89

< 20 = ORIG-VTV
S mmmm CS-VTV
3 15 EXT-VTV
2 FG-VTV
g 10

[0}

£ 5

g

&

0 [B [B

8y o) Sy, 7y 4 S 9
¢ e, 2 W Ve, 2] o)
{s 4/V$ S,oloé\'9 s {4 }/O(/, /r@/v /144 %

Figure 4.9: Performance evaluation of the proposed scheme. The overhead imposed by the
proposed fine-grained VTable protection compared to the original VTV.

CFI suggests that binaries should be able to exercise only the control-flows that
are allowed by the program’s source. All indirect branches that happen at run-time
should not be arbitrarily influenced by user input. Applying CFI in real-world soft-
ware is challenging, since legacy applications cannot be recompiled, and even in the
case where source is available, discovery of the complete control-flow graph is chal-
lenging [99], while the performance of validating call targets can produce overheads.
Therefore, relaxed implementations [139; 141] were proposed that could be applied
directly in binaries, but as it was quickly demonstrated, these implementations sac-
rificed security and therefore they are potentially exploitable [54; 38; 22].

Another approach for enforcing CFI is by leveraging certain hardware features,
such as the Last Branch Record (LBR) debug registers, for performing anomaly de-
tection in the last indirect branches a process has followed [102; 27]. Unfortunately
it seems that an exploit can evade detection by inserting legitimate-looking gadgets
in its ROP chain [55; 38; 22].

A particular set of CFI solutions focus on protecting only VTable pointers. The
details of different variants are discussed in Section 4.2.2.

Last but not least, researchers have proposed methods for defending against use-
after-free vulnerabilities based on custom allocators [5], which do not allow a mem-
ory area to host different type of objects during the life cycle of the process, or patch-
ing the developer’s code for keeping track of dangling pointers [137]. These tech-
niques protect only against use-after-free bugs, and they experience serious memory
and computational overheads.

4.7 Conclusion

In_this_paper.we. revisited. VTable protections. Although it was recently demon-
strated that binary-based solutions that aim at protecting VTables fail to reconstruct

<
.
)
2
Q
©
K -
®)

90 CHAPTER 4. SHRINKWRAP

C++ semantics, and thus they are potentially vulnerable, we further argued that even
when source code is available, the analysis is not straight-forward. We went through
the state-of-the-art industry standard implementations, VTV, and highlighted weak-
nesses. Based on that, we formally modeled and designed an optimal solution for
protecting VTables, and we implemented our proposal in GCC. In addition, we de-
veloped a testing methodology that can demonstrate that our analysis is correct,
while it can also assist in evaluating similar VTable-protection frameworks. This
paper suggests a formal guideline and evaluation framework for any methodology
that aims at hardening binaries by protecting VTables.

4.8 Acknowledgment

This work is supported by the European Research Council through project ERC-
2010-StG 259108-ROSETTA, by the Microsoft Research PhD Scholarship Programme
through the project MRL 2011-049.9, by the Netherlands Organisation for Scientific
Research through grant NWO 639.023.309 VICI “Dowsing”, and by the European
Commission through the project SHARCS under Grant Agreement No. 644571.

METALLOC: Efficient and Comprehensive
Metadata Management
for Software Security Hardening

Abstract

Many systems software security hardening solutions rely on the ability to look up
metadata for individual memory objects during the execution, but state-of-the-art
metadata management schemes incur significant lookup-time or allocation-time over-
heads and are unable to handle different memory objects (i.e., stack, heap, and
global) in a comprehensive and uniform manner.

We present METALLOC, a new memory metadata management scheme which
addresses all the key limitations of existing solutions. Our design relies on a com-
pact memory shadowing scheme empowered by an alignment-based object alloca-
tion strategy. METALLOC’s allocation strategy ensures that all the memory objects
within a page share the same alignment class and each object is always allocated to
use the largest alignment class possible. This strategy provides a fast memory-to-
metadata mapping, while minimizing metadata size and reducing memory fragmen-
tation. We implemented and evaluated METALLOC on Linux and show that MET-
ALLOC (de)allocations incur just 3.6% run-time performance overhead, paving the
way for practical software security hardening in real-world deployment scenarios.

91

To)
S
)
2
Q
©
<
®)

92 CHAPTER 5. METALLOC

5.1 Introduction

Many common software security hardening solutions need to maintain and look up
memory metadata at runtime. Examples include bounds information to validate ar-
ray references [6; 7], type information to validate cast operations [84], solutions that
prevent use-after-free exploits [83; 137], and object pointer information to perform
garbage collection [107]. While newer programming languages can often track such
metadata in-band using fat pointers, previous efforts to implement in-band meta-
data management in systems programming languages, such as C or C++, have found
limited applicability due to poor ABI compatibility and nontrivial overhead [41].

The alternative solution is to associate metadata information with the memory
objects themselves, assuming we have a mechanism to map pointers to the appropri-
ate metadata. Such a primitive is the key to implementing modern metadata manage-
ment schemes, but it is also challenging because it needs to support all the possible
memory objects (heap objects allocated with malloc (), globals, and stack objects)
as well as minimize the performance and memory impact of metadata update and
lookup operations.

Minimizing the impact of update operations is challenging, because allocation
and deallocation of memory objects and their metadata occurs frequently during
execution. Minimizing the impact of lookups is also challenging, since metadata
lookup must be able to support interior pointers into nested classes, structures, and
arrays—dictating support for range queries and disqualifying the use of space- and
time-efficient hash tables.

Current state-of-the-art software hardening projects all rely on tailored, mostly
one-off solutions for metadata management, but none of them simultaneously achieves
low lookup and update impact in all cases. As a result, none of them provides a
generic solution. Common approaches include tree-based metadata handling and
memory shadowing.

Tree-based approaches [61; 83] store an interval node for each allocated object
according to its bounds. Unfortunately, tree lookups can result in a prohibitive per-
formance hit, as the tree depth is frequently in the double digit range (more than
1,024 memory objects). The lookup time is also unpredictable, as it varies with the
object count. As a result, tree-based systems are unsuitable for most production
situations.

Traditional memory shadowing, in turn, relies on a fixed pointer-to-metadata
mapping [6; 7; 137]. The key design choice for this approach is the metadata com-
pression ratio. The metadata compression ratio represents the number of metadata
bytes that need to be tracked for each data byte. For example, assume we store one
byte of metadata for each block of eight bytes. In this case the compression ratio
is %. If we have a pointer p and an array of metadata starting at address ¢, we can
compute a pointer to the metadata for object as %p + ¢. This way, metadata can
be located. very efficiently. However, choosing the appropriate compression ratio is
difficult, as it enforces a minimum alignment on every memory allocation. Small

5.2. METALLOC 93

compression ratios result in inflated metadata size and a large tracking overhead,
while large compression ratios result in significant memory fragmentation. In prac-
tice, memory management systems typically only guarantee alignment up to 8 or 16
bytes. This means that to keep the compression ratio reasonably small only a single
byte of metadata is supported [6; 7]. Even then, this approach introduces prohibitive
initialization time and memory overhead for large objects in case multi-byte meta-
data is needed. Finally, recent approaches rely on custom allocators to reduce the
impact of memory shadowing on the heap, but cannot support efficient and compre-
hensive metadata management including more performance-sensitive objects on the
stack [84].

In this paper, we propose METALLOC, a new metadata memory management
scheme based on an efficient and comprehensive variable memory shadowing strat-
egy. Our strategy builds on recent developments in heap [49] and stack [80] organi-
zations to implement a variable and uniform pointer-to-shadow mapping and signif-
icantly reduce the performance and memory impact of metadata management. Our
results show that METALLOC is practical and can support efficient whole-memory
metadata management for several software security hardening solutions.

Summarizing, we make the following contributions:

* We propose a new memory metadata management scheme that supports in-
terior pointers and is time- and space-efficient in both lookups and updates
across all memory object types.

* We present a prototype implementation termed METALLOC, which demon-
strates that efficient and comprehensive metadata management is feasible and
widely applicable in practice.

* We present an empirical evaluation showing that METALLOC incurs a run-
time performance overhead of just 3.6% for (de)allocations on SPEC2006.

5.2 METALLOC

As we have seen, one of the major limitations of state-of-the-art memory shadowing
approaches is the difficulty of getting the compression ratio right. Because the right
value may differ from application to application, the intuitive solution is to enable a
variable compression ratio. This eliminates the fixed memory overhead associated
with metadata shadowing and greatly reduces the allocation-time performance hit.
METALLOC’s key goal is to implement a metadata management scheme han-
dling all memory objects in a uniform and highly efficient manner, regardless of
their allocation type (heap, stack, or global memory). There are two requirements to
accomplish this goal. The first is to support a simple, efficient, and uniform mech-
anism to associate pointers with the compression ratio. The second is the ability to
optimize the compression. ratio.as.much as possible, ideally such that only a single
metadata entry is needed for each object. METALLOC meets both these require-

[Te)
Nt
)
2
o
]
=
®)

94 CHAPTER 5. METALLOC

ments by ensuring that all the memory objects within a memory page share a non-
trivial common alignment, which is fixed as long as there are active objects within
the page. This requirement serves as a basis for our scheme and is met by drawing
from modern heap [49] and stack [80] organizations widely used in production, as
discussed in Section 5.2.4.

Alignment relates directly to the compression ratio, namely an n-byte object
alignment allows one metadata entry to be associated to every group of n bytes
within said object. Having uniform alignment within each memory page allows
METALLOC to associate compression ratios to the individual memory pages and
to look them up using a mechanism similar to page tables. Such page tables also
include the location of the metadata region corresponding to the individual pages.
This mechanism is described in the following section.

5.2.1 Efficient retrieval of page information

Because lookups are expected to be very frequent, the page table design is very
performance-sensitive. For this reason, METALLOC opts for a single-level page
table design, which requires only one memory read for each lookup. We refer to
this data structure as the meta-page table. Figure 5.1 shows the data structures of
METALLOC, including the use of the meta-page table. Given a pointer, we split it
in a page index and an offset. The page index is used as an index into the meta-
page table, which is an array stored at the page table base. This page table base is a
compile-time constant and therefore requires no extra memory read. The entries in
this array are eight bytes large, split between the seven-byte metabase pointer and
the one-byte base-2 logarithm of the memory alignment. The metabase points to the
start of an array of metadata entries available for this page table entry. The size of the
entries of the metadata array is determined by the metasize compile-time constant,
which specifies the amount of metadata per object. It should be noted that objects
larger than the alignment size have multiple metadata entries, each with the same
contents. The offset part of the original pointer divided by the alignment serves as
an index into the metadata array, allowing the correct metadata entry to be located
for the specified object.

While the size of the meta-page table (for x86-64 systems using 48-bit virtual
addresses and 4096-byte pages) is theoretically 236 entries or 512 GB, only pages
corresponding to address ranges currently in use by the process need to be allocated.
To implement this strategy, METALLOC reserves the required virtual memory area
in advance and relies on demand paging to lazily link the required page table pages
to physical memory.

5.2.2 Static versus dynamic metadata

The scheme presented. so far assumes.a fixed-sized metadata entry which is statically
initialized at the start of the object’s lifetime. For objects whose size exceeds their

5.2. METALLOC 95

pointer

| pageidx |offset|

pageidx * 8 +
page table base
page table

| metabase |a|ign metabase |a|ign| metabase |a|ign|
(offset >> align) *
metasize +
metabase metadata

Figure 5.1: METALLOC’s data structures

alignment there are multiple copies of this metadata entry in memory. A metadata
entry can be an integer, a small struct or even a pointer, which can refer to further
metadata of arbitrary dynamic size.

In the simplest possible setup, each metadata entry is filled with a compile-time
constant, such as a type index. This scheme allows the instrumentation to identify
certain predetermined object characteristics at run time, with the lowest possible
overhead. In this use case, initializing the metadata is cheap, as it involves a simple
memset operation for the compressed metadata range corresponding to the object.
Given the use of variable compression rates, the amount of metadata that needs to
be initialized is minimal.

Alternatively, the metadata can include a pointer to information created at com-
pile time in global memory. This scheme may be, for example, used to support
in-depth type tracking when implementing precise garbage collection for languages
such as C/C++ [107]. From an overhead perspective, this is similar to the constant
metadata scenario, as the pointer itself is just another numeric constant, whose value
is fixed at compile time.

Finally, the metadata pointer might be generated at run time. In this case, a meta-
data node is allocated whenever a new memory object is allocated and deallocated
when it is freed. This scheme is relevant to instrumentation tailored to individual
object instances, rather than broad object groups. Sharing lifetimes is trivial on the
stack and in global memory, but leads to interesting design decisions when dealing
with the heap. Intuitively, the fastest solution is to increase the allocated size of the
object itself and store the metadata node in-band. In practice, we found this solution
to result in significant performance degradation due to its negative caching impact.
The alternative is to perform a second heap allocation dedicated to the metadata
node itself. While we expected a nontrivial performance hit for applications where
allocations dominate the run time, we found the impact to be reasonable in practice.
In addition, most applications do not require object-specific metadata tracking and
can safely refrain from using dynamic metadata, as it incurs the highest run-time and
memory overhead.

[Te)
Nt
)
2
o
]
=
®)

96 CHAPTER 5. METALLOC

5.2.3 Instrumentation across memory types

Globals. Global memory is the simplest to deal with from a memory shadowing
perspective. Global allocations only occur at load time and the amount of global
data is typically limited. These properties suggest that the default 8-byte alignment
within the system works reasonably well for this allocation type, thus we can just
associate every global data memory page with this alignment in the meta-page table.
We simply instrument binary files (executables and dynamic libraries) to allocate
metadata pages and set up the meta-page table entries corresponding to their data
sections as soon as the binaries are loaded.

Stack. Stack pages share the property of long lifetimes with global memory (as-
sociated with the stack for the lifetime of the thread), but they are unique in that
object allocations within the pages occur frequently and with minimal run-time cost.
A simple solution is to restrict stack objects to the conservative 8-byte alignment [6],
but this makes tracking multi-byte metadata prohibitively expensive. METALLOC
solves this challenge by leveraging recent advances in shadow stack solutions (re-
cently integrated in mainstream compilers) [80], which split the program stack into
a primary and a secondary stack. METALLOC uses a multi-stack approach with
a primary and a number of secondary stacks. The primary stack preserves all the
stack objects not subject to the current instrumentation, including ABI specific ele-
ments such as return addresses and arguments, while the secondary stacks store the
remainder. The secondary stacks each are designed for a particular class of object
sizes with appropriate non-trivial alignment to improve the compression ratio for
metadata tracking. This design ensures that METALLOC only needs to care about
the secondary stacks, which are free from ABI specific restrictions. We propose us-
ing the same heuristic for all instrumentations, namely moving all objects which can
potentially be subject to memory corruption attacks (either address taken or address
used in unpredictable manner) to one of the secondary stacks. In practice the sec-
ondary stacks end up composed mostly of arrays and some address taken integers.
As a result, we propose enforcing a relatively large alignment on each object within
every secondary stacks. While some memory fragmentation does occur with address
taken integers, it only affects a small portion of the entire memory address space of
the program and it will not break program functionality in general. Our current
design uses one secondary stack for small and medium objects having a fixed align-
ment of 64 bytes, and another secondary stack for large objects where 4096 byte
alignment is enforced. METALLOC instruments the allocation of program stacks to
create the secondary stacks and to also allocate the corresponding metadata pages
and to set up the appropriate meta-page table entries.

Heap. In order to meet our requirements, METALLOC uses a heap allocator
designed around the concept of object sizes. Instead of keeping track of the heap as a
whole, it operates with size-specific free-lists instead. Whenever a free-list becomes
empty,.the allocator can request new.memory pages from the system, which are then
associated with this particular free-list until they are released back to the system.

5.3. APPLICATIONS 97

malloc(100) —| Object
Caches
Free-list 1. Allocate Span Page
_________________________ ; Allocator
: 4
.............. 8bYtes 2. Hook /3 Allocate
i 16 byt : s
yes ; .- - _*_ -4 metadata
Page5|ze 1 MetAlloc !
......................... 3 [- - - - - |§
, Metadata'
4. Configure metadata for Span ' elrz]a]%a 4
I_ - - - 4

Figure 5.2: Heap metadata management using METALLOC

The allocator would then enforce the largest possible alignment for objects within
each free-list without triggering too much fragmentation. Applying METALLOC to
such a heap allocator is trivial as one just needs to monitor page request by the free-
lists to associate the appropriate metadata information with the pages. Figure 5.2
summarizes this operation with the addition of potential object caches and a page
allocator to improve performance.

5.2.4 Implementation specifics

While it is possible to build a new custom heap allocator which respects our design
specification, we decided to build upon a proven, state-of-the-art allocator instead.
We expect that for most complex C++ applications the heap allocator has a signifi-
cant impact on performance, thus a proven allocator is key. The tcmalloc allocator
(developed and used by Google) features a memory organization which matches our
requirements. Neither tcmalloc nor our modifications affect ABI compatibility, so
no changes are needed in the operating system and external libraries do not need to
be recompiled.

For the stack we decided to extend the implementation of SafeStack [80], as it
is advertised as a replacement for stack canaries going forward and it is becoming
a core component within the LLVM project. Its interpretation of safe and unsafe
objects also matches up well with our definition of objects requiring instrumentation.
SafeStack does not affect ABI compatibility.

5.3 Applications

Efficient metadata tracking enables a wide range of valuable instrumentation tools to
be used with production systems where performance overhead is a key characteristic.
In the following we present a couple of key examples of such instrumentation. This
list is by no means exhaustive and we hope that readers find other innovative uses

[Te)
Nt
)
2
o
]
=
®)

98 CHAPTER 5. METALLOC

of the framework. In this (short) paper, the applications serve as motivation for our
work and we will focus our evaluation on the framework itself.

5.3.1 Write Integrity Protection

Recent developments in attack techniques [23; 44; 113] show the need to enforce ad-
ditional data integrity within the program besides the classic control-flow integrity.
Both Microsoft’s WIT [6] and Oracle Application Data Integrity have looked into
the topic of restricting the target addresses of memory writes using a coloring mech-
anism. In these schemes each memory location is associated with a given color
and the instrumentation alongside each memory write checks if the target location
matches the color of the pointer/instruction. In the case of both of these systems,
the color for the memory location is tracked using metadata shadowing with a fixed
compression ratio. Replacing these systems with METALLOC can lead to substan-
tial improvements in allocation performance.

5.3.2 Bounds Checking

Efficient bounds checking has been proposed in the past to counter buffer overflow
vulnerabilities, but none of the solutions ended up in production systems due to the
performance and memory overheads they bring. One particularly efficient example
is Baggy Bounds Checking [7] which offers a strong protection model with limited
memory overhead, based on fixed compression metadata. Its primary deficiency is
the need to allocate objects in slots with sizes in the powers of two, a requirement that
is typically not enforced in generic heap allocators due to the potential for high in-
ternal fragmentation. The system can be rebuilt without the alignment requirements
but that would require tracking base pointer and size information for every object,
which leads to performance and memory issues with the fixed compression ratio (it
is prohibitive to store 16 bytes of metadata for every 8 data bytes). METALLOC
and its variable compression ratio can help to deal with the problematic large object
allocations, ensuring consistently low overhead across applications even when using
multiple metadata bytes.

An alternative implementation of bounds checking is Light-weight Bounds Check-
ing [67]. This system detects out-of-bounds accesses at the memory access time in-
stead of during the pointer arithmetic. The system injects guard zones between ob-
jects and fills them with a random byte value to detect any access into these regions.
A memory access is safe if it returns a different value, but real data might also acci-
dentally match the guard value. An additional check is performed in the latter case
to filter out false positives, but on average it is only performed with probability 1 in
256. This check retrieves a metadata bit associated with the address which specifies
if it belongs to real data or one of the guard zones. Light-weight Bounds Checking
uses.a fixed compression.ratio.shadowing scheme of one metadata bit for every byte
of data in the program. However, metadata retrieval is avoided on the fast-path of

5.3. APPLICATIONS 99

this scheme with little impact on performance. As a result replacing the existing
metadata tracking with METALLOC only yields benefits to the system. The existing
system uses a hierarchical metadata storage system requiring two memory accesses
to retrieve the metadata bit. METALLOC also performs two memory accesses, but it
involves more pointer arithmetic instructions. It is safe to say that the fast-path be-
havior will easily hide the small difference in retrieval overhead. On the other hand
the variable compression ratio of METALLOC reduces allocation overhead, which
can be significant in many applications. As a result, Light-weight Bounds Checking
can also benefit from using METALLOC for its metadata tracking.

5.3.3 Type Confusion Detection

Recently type confusion vulnerabilities received significant attention as an alterna-
tive memory corruption mechanism which is not covered well by static analysis and
run-time checkers. CaVer [84] was designed as an efficient system to dynamically
track type information and to perform type validation at potentially vulnerable cast
locations. It uses the metadata system tracking in LLVM for heap objects, but reverts
to red-black trees for stack and global allocations. As such, it requires additional
operations during metadata retrieval to identify the type of the pointer. By using
METALLOC, CaVer gains access to uniform pointer handling and low overhead ir-
relevant of the memory usage pattern. This is especially beneficial when considering
the excessive overhead reported in CaVer for Firefox, which was attributed to its use
of stack variables.

5.3.4 Dangling Pointer Detection

Use-after-free vulnerabilities represent the most prominent attack vectors in today’s
browser landscape [83]. While a lot of effort is invested to detect these vulner-
abilities via static analysis and software testing, they typically manifest in highly
specialized contexts, making them hard to detect and to fix preemptively. As such, a
couple of systems have been suggested recently to mitigate the underlying reason for
the vulnerabilities, dangling pointers [83; 137]. These systems rely on tracking heap
allocations and their connectivity at run time. When an object is freed, the systems
identify whether there are any pointers still pointing into the object being released.
These pointers are then set to a benign value of NULL to mitigate potential memory
dereferences using them. Systems for tracking dangling pointers share an underly-
ing design based on three core data structures. The first is the object map, which
identifies heap objects based on any pointer into the object itself (at any offset). This
is equivalent to object metadata tracking. DangNull [83] uses red-black trees to track
heap allocations, but as discussed in section 5.1, this scheme is susceptible to heavy
and unpredictable overhead. FreeSentry [137] uses a label based system, which is
equivalent to.the fixed compression. ratio metadata shadowing. This scheme offers
fast fixed-time metadata retrieval, but incurs significant allocation-time and memory

[Te)
Nt
)
2
o
]
=
®)

100 CHAPTER 5. METALLOC

overhead. In contrast, METALLOC combines low allocation- and lookup overhead
with efficient memory usage.

5.4 Evaluation

To measure the performance impact of metadata tracking, we instrumented all the
C and C++ SPEC2006 [68] benchmarks to observe the overhead it introduces. As a
baseline, we compiled the applications with SafeStack enabled since it is advertised
as a viable replacement for stack canaries, even showing lower overhead on some
benchmarks [80]. We also use tcmalloc as the heap allocator for our baseline, as
it can have very different run-time performance compared to the system allocator.
This decision is also motivated by the fact that we observed a 10% improvement
of execution times when using tcmalloc on SPEC2006 (geometric mean). This im-
provement increases to 17% when considering only the C++ benchmarks. For each
benchmark, we used the median run time over 16 runs on a Xeon E5-2630 running
CentOS Linux 7.2 64-bits.

Figure 5.3 shows the overhead introduced with the different configurations of
METALLOC. We evaluated creating and initializing both 1 and 8-bytes of metadata
for all objects. These setups correspond to different instrumentation types, like write
integrity tracking or type hashes. The overhead numbers are very low, with the max-
imum being around 20% for perlbench and the geometric mean being 3.6% for one
byte of metadata and 3.7% for eight bytes. The results also show that metadata size
has a limited impact on the overall performance, showing that the variable compres-
sion ratio can help deal with applications requiring complex metadata. While the
measured overhead only includes the metadata creation and initialization, not the
instrumentation itself, the latter can be tuned with careful design and is the topic of
future work using METALLOC.

5.5 Conclusion

In this paper, we presented METALLOC, a new memory metadata management
scheme for software security hardening solutions. Our design is both comprehensive—
given that it can handle whole-memory object metadata in a uniform and transparent
way—and efficient—given that it yields a run-time performance overhead of just
3.6% in practice for (de)allocations. We believe METALLOC can bring many in-
strumentation solutions within reach for adoption in practice, allowing, for example,
many.vulnerability mitigation techniques to improve software security in an efficient
and backward compatible fashion.

5.6. ACKNOWLEDGMENT 101

1.3

H 1B
125 -~~~ """ """ W |-~
w2y " ~~"°"°"~""~""""°"°"°rtrrTTrmnm Tt

—_
—_
W

Normalized run time
-
vy —_

Py 28600 Py Sopden S0, 8, S8 026160, Py s Soh ey
rjge%% O R 9"‘7'12,% b vap 1"*5'1060;&

Figure 5.3: C/C++ SPEC2006 overhead with different configurations of METALLOC. 1(8)B
represents the configuration with 1(8)-byte metadata entries.

5.6 Acknowledgment

This work is supported by the Netherlands Organisation for Scientific Research
through grant NWO 639.023.309 VICI “Dowsing”, and by the European Commis-
sion through the project SHARCS under Grant Agreement No. 644571.

[Te)
Nt
)
2
o
]
=
®)

TYPESAN: Practical Type Confusion Detection

Abstract

The low-level C++ programming language is ubiquitously used for its modularity
and performance. Typecasting is a fundamental concept in C++ (and object-oriented
programming in general) to convert a pointer from one object type into another.
However, downcasting (converting a base class pointer to a derived class pointer)
has critical security implications due to potentially different object memory layouts.
Due to missing type safety in C++, a downcasted pointer can violate a programmer’s
intended pointer semantics, allowing an attacker to corrupt the underlying memory
in a type-unsafe fashion. This vulnerability class is receiving increasing attention
and is known as type confusion (or bad-casting). Several existing approaches detect
different forms of type confusion, but these solutions are severely limited due to both
high run-time performance overhead and low detection coverage.

This paper presents TYPESAN, a practical type-confusion detector which pro-
vides both low run-time overhead and high detection coverage. Despite improving
the coverage of state-of-the-art techniques, TYPES AN significantly reduces the type-
confusion detection overhead compared to other solutions. TYPESAN relies on an
efficient per-object metadata storage service based on a compact memory shadowing
scheme. Our scheme treats all the memory objects (i.e., globals, stack, heap) uni-
formly to eliminate extra checks on the fast path and relies on a variable compression
ratio to minimize run-time performance and memory overhead. Our experimental re-
sults confirm that TYPESAN is practical, even when explicitly checking almost all
the relevant typecasts in a given C++ program. Compared to the state of the art,
TYPESAN yields orders of magnitude higher coverage at 4—10 times lower perfor-
mance overhead on SPEC and 2 times on Firefox. As a result, our solution offers
superior protection and is suitable for deployment in production software. More-
over, our highly efficient metadata storage back-end is potentially useful for other
defenses that require memory object tracking.

103

104 CHAPTER 6. TYPESAN

6.1 Introduction

Type confusion bugs are emerging as one of the most important attack vectors to
compromise C++ applications. C++ is popular in large software projects that require
both the modularity of object-oriented programming and the high efficiency offered
by low-level access to memory and system intrinsics. Examples of large C++ pro-
grams are Google Chrome, large parts of Microsoft Windows and Firefox, and the
Oracle Java Virtual Machine. Unfortunately, C++ enforces neither type nor memory
safety. This lack of safety leads to type confusion vulnerabilities that can be abused
to attack certain programs. Type confusion bugs are an interesting mix between lack
of type safety and lack of memory safety. Generally, type confusion arises when the
program interprets an object of one type as an object of a different type due to unsafe
typecasting—Ileading to reinterpretation of memory areas in different contexts. For
instance, it is not uncommon for a program to cast an instance of a parent class to
a descendant class, even though this is not safe if the parent class lacks some of the
fields or virtual functions of the descendant class. When the program subsequently
uses the fields or functions of the descendant class that do not exist for the given
object, it may use data, say, as a regular field in one context and as a virtual function
table (vtable) pointer in another. Exploitable type confusion bugs have been found
in a wide range of software products, such as Adobe Flash (CVE-2015-3077), Mi-
crosoft Internet Explorer (CVE-2015-6184), PHP (CVE-2016-3185), and Google
Chrome (CVE-2013-0912). This paper shows how to detect type confusion with
higher detection coverage and better performance than existing solutions.

TYPESAN: always-on type checking Current defenses against type confusion [105;
84] are impractical for production systems, because they are too slow, suffer from
low coverage, and/or only support non-polymorphic classes. The greatest challenge
in building an always-on type checker is the need for per-object metadata tracking
which quickly becomes a bottleneck if the program allocates, frees, casts, and uses
objects at high frequency (e.g., on the stack).

To address the high overhead and the low coverage of existing solutions, we
present TYPESAN, an explicit type checking mechanism that uses LLVM-based in-
strumentation to enforce explicit type checks. Compared to previous work, TYPE-
SAN provides extended coverage and massively reduced performance overhead. Our
back-end uses a highly efficient metadata storage service (based on a shadowing
scheme with a variable compression ratio) to look up types from pointers. This lim-
its the amount of data written for large allocations (such as arrays of objects) while
at the same time supporting efficient and scalable lookups, requiring only 3 mem-
ory reads to look up a type. We envision this new type of metadata storage to be
also useful for other sanitizers, e.g., to verify memory safety, and we plan to explore
further applications in future work.

We primarily.envision. TYPESAN. as an always-on solution, making explicit type
checks practical for commodity software. Used in attack prevention mode, TYPE-

6.2. BACKGROUND 105

Checker xalancbmk soplex omnetpp | dealll
CaVer 24 thousand 0 0 0
TYPESAN 254 min 209 thousand 2.0 bln 3.6 bln

Table 6.1: Coverage achieved by the type checkers on SPEC. The numbers represent the
number of downcasts verified by each of these systems while executing the reference workloads.
The CaVer numbers are from the original paper to ensure a fair comparison.

SAN-hardened binaries are shipped to end users and terminate the program on bad
casts, thereby preventing zero-day type confusion exploits. Combined with liveness
reports for modern software (like the Google Chrome and Mozilla Firefox crash re-
porters), such a deployment signals the developers about potentially missing type
checks. In addition, TYPESAN can be used in software testing where TYPESAN
identifies potential bad casting in the source code. In relaxed mode, TYPESAN sim-
ply logs all bad casts to scan for underlying vulnerabilities, e.g., when running a test
suite.

We have implemented a prototype of TYPESAN for Linux on top of LLVM 3.9.
Our prototype implementation is compatible with large source code bases. We have
evaluated TYPESAN with the SPEC CPU2006 C++ programs and the Firefox brow-
ser. Compared to CaVer [84], the current state-of-the-art type confusion detector, we
decrease overhead by a factor 3—6 for the SPEC benchmarks they reported on while
simultaneously increasing the number of typecasts covered by checks by several or-
ders of magnitude (see Table 6.1 and Table 6.2 for more details).

Contributions We make the following contributions:

* A design for high-performance, high-coverage typecast verification on legacy
C++ code that is 3—6 times faster than the state-of-the-art detector with lower
memory overhead and orders of magnitude more typecasts.

* A thorough evaluation that shows how our design delivers both nearly com-
plete coverage and performance that is suitable for production usage.

* An automatically generated test suite for typecasting verification to ensure that
all different combinations of C++ types are properly handled.

* An open-source implementation of our TYPESAN design, available at https:
//github.com/vusec/typesan.

6.2 Background

In this section, we first explain typecasting in C++ and how doing so incorrectly
can_lead. to.vulnerabilities. Afterwards, we discuss existing defenses against type
confusion.

https://github.com/vusec/typesan
https://github.com/vusec/typesan

106 CHAPTER 6. TYPESAN

Checker xalancbmk | soplex
CaVer 29.6% 20.0%
TYPESAN 7.1% 1.8%

Table 6.2: Performance overhead achieved by the type checkers on SPEC. The CaVer numbers
are taken from the original paper to ensure a fair comparison. The comparison only uses the
applications CaVer has been evaluated on by its authors.

6.2.1 Type confusion

Object-oriented programming languages such as C++ allow object pointers to be
converted from one type into another type, for example by treating an instance of
a derived class as if it were an instance of one of its ancestor classes. Doing so
allows code to be reused more easily and is valid because the data layout is such that
an object from a derived class contains the fields of its parent classes at the same
relative offsets from each other.

In our discussion on the safety of type conversions (or typecasts), we will use
the following terminology: the run-time type refers to the type of the constructor
used to create the object, the source type is the type of the pointer that is converted,
and the target type is the type of the pointer after the type conversion. Since the
program may treat objects as if they are instances of their ancestor types, an object
pointer should always refer to an object with a run-time type that is either equal to or
a descendant of the pointer type. Therefore, a type conversion is always permissible
when the target type is an ancestor of the source type. A compiler can verify such
casts statically, because if the source type is a descendant of the target type it implies
that the run-time type is also a descendant. We refer to this type of conversion as an
upcast.

If, on the other hand, the target type is a descendant of the source type, the
conversion may or may not be permissible depending on whether the run-time type
is either equal to or a descendant of the target type. This is impossible to verify
in the general case at compile time because the run-time type is not known to the
compiler, due to inter-procedural/inter-component data flows. We refer to this type
of conversion as a downcast. Downcasts require run-time verification to ensure type
safety. Incorrect downcasts may allow attackers to exploit differences in the memory
layout or semantics of the fields between the target type and run-time type.

The C++ programming language permits both upcasts and downcasts and allows
the programmer to specify whether downcasts should be checked at run time. Specif-
ically, the language provides three fundamental types of casts: reinterpret_cast,
dynamic_cast, and static_cast. Dynamic casts are enforced at run time with an
explicit type check and are therefore a safe but expensive way to ensure type safety.
Static casts on the other hand only verify whether the conversion could be a valid
upcast or downcast based on the source and target types. This lack of an online
check can easily lead to.type.confusion when the underlying type observed at run
time differs from the expected type in the source code.

6.2. BACKGROUND 107

As an example, in V8Clipboard in Chrome 26.0.1410.64, we find the following
static cast:

static_cast<HTMLImageElement*>(node)->cachedImage ()

Here, the program explicitly casts an image node to an HTMLImageElement
without properly checking that it is of the right type. Unfortunately, node could
be an SVG image, which is of a sibling class and has a much smaller vtable than
HTMLImageElement. Note that the program immediately calls cachedImage () on
the invalid object which leads to a virtual function call that erroneously interprets
the memory adjacent to the SVG image’s vtable as code pointers.

If the program would check all static casts dynamically, we would not run into
the type confusion problem (except for explicitly forced “problems” through rein-
terpreted casts). However, casting is such a common operation that the overhead
of checking all static casts dynamically is significant and therefore, C++ allows the
programmer to choose an explicit run-time cast only where “needed” (according to
the programmer).

For completeness, we mention that the last form of casting, reinterpret_cast,
forces a reinterpretation of a memory area into a different type. It allows a program-
mer to explicitly break underlying type assumptions.

6.2.2 Defenses against type confusion

In recent years, several projects have tried to address the type confusion problem.
There are two main types of approaches: those based on vtable pointers embedded in
the objects and those based on disjoint metadata. Solutions based on vtable pointers
have the advantage that they do not need to track active objects but they have the
fundamental limitation that they cannot support non-polymorphic classes, which do
not have vtables, without breaking binary compatibility.

Examples of vtable-based solutions are UBSan [105] and Clang Control-Flow
Integrity [29] (CFI). UBSan instruments static casts to execute an explicit run-time
check, effectively turning them into dynamic casts. UBSan requires manual black-
listing to prevent failure on non-polymorphic classes. Unfortunately, the existing
type check infrastructure that is available in C++ compilers is inherently slow (as it
was designed under the assumption that only few dynamic checks would be executed
with the majority of checks being static). This is another reason why type-safety so-
lutions did not see wide adoption. Therefore, UBSan is intended as a testing tool and
not as an always-on solution due to its prohibitive overhead. Clang CFI is designed
to be faster but has not published performance numbers. Moreover, like all solutions
in this group, it cannot support non-polymorphic classes.

CaVer [84], on the other hand, uses disjoint metadata to support non-polymorphic
classes without blacklisting. Unfortunately, the overhead is still prohibitively high
due_to.inefficient metadata tracking. (especially on the stack) and slower checks,
reaching up to 100% for some browser benchmarks. Because CaVer cannot rely

108 CHAPTER 6. TYPESAN

Checker |Poly|Non-poly|No blacklist| Tracking|Threads
UBSan v v
Clang CFI| Vv v v
CaVer v v v v limited
TYPESAN| Vv v v v v

Table 6.3: High-level feature overview of checkers.

on vtables (present only in polymorphic objects), it must track all live objects. In
particular, CaVer uses red-black trees to track stack-allocated objects and a direct
mapping scheme based on a custom memory allocator for heap-based objects. As a
consequence, it has to determine the correct memory region for each pointer to be
checked and it cannot handle stack objects shared between threads even if proper
synchronization is used in the application. In addition, as shown in Section 6.9.2,
CaVer has poor object allocation coverage in practice, ultimately leading to reduced
type-confusion detection coverage. For example, CaVer reports only 24k verified
casts on xalancbmk and none on all other SPEC CPU2006 C++ benchmarks, while
we show that four benchmarks actually have a large amount of relevant casts with
their total numbers is in the billions. As such, TYPESAN is the first solution that
provides efficient and comprehensive protection against type confusion attacks in
the field, protecting users from vulnerabilities not found during testing.

In this paper we introduce TYPES AN, a generic solution for typecast verification
based on object tracking, that supports all types of classes with no need for blacklist-
ing. Moreover, we cover a very large percentage of all relevant casts at an acceptable
overhead. Table 6.3 gives a high-level comparison of the typecast verification solu-
tions presented here. UBSan and Clang CFI are restricted to polymorphic types,
with UBSan requiring further blacklisting to handle certain code bases. CaVer and
TYPESAN also support non-polymorphic types, but this comes at the cost of needing
to track the type for each object. CaVer further comes with the limitation that threads
cannot share stack objects safely even with proper synchronization. Table 6.3 and
Table 6.4 show which allocation types are tracked in practice by tracking solutions.
See Section 6.5.1 for a more in-depth discussion of the various allocation types.
CaVer officially supports stack and global data, but missed such bad casts in our
coverage tests (see Section 6.9.2).

6.3 Threat model

We assume that the attacker can exploit any type confusion vulnerability but is un-
able to perform arbitrary memory writes otherwise. Our type safety defense mech-
anism exclusively focuses on type confusion. Other types of vulnerabilities such as
integer overflows or memory safety vulnerabilities are out of scope and we assume
that orthogonal defense mechanisms, protect against such vulnerabilities. Our de-
fense mechanism tolerates arbitrary reads as we do not rely on secret information

6.4. OVERVIEW 109

Checker |stack | global | new/new[] | malloc family
CaVer NO | PARTIAL v NO
TYPESAN | v v v

Table 6.4: Allocation types tracked by checkers, see Section 6.5.1 for a detailed discussion.

that is hidden from the attacker.

6.4 Overview

TYPESAN is an extension to the Clang/LLVM compiler [81] that detects invalid
static_casts (i.e., all instances in the program where an object is cast into a dif-
ferent type without using an explicit run-time check through dynamic_cast or an
explicit override through reinterpret_cast) in legacy C++ programs. Upon de-
tection of an invalid cast, the program is terminated, optionally reporting the cause
of the bad typecast. TYPESAN is a compiler-based solution and any C/C++ source
code can be hardened, without modification, by recompiling it with our modified
clang++ compiler with the -fsanitize=type option and linking against the tc-
malloc memory allocator [49] using the -1tcmalloc linker flag. As we show in
Section 6.9, TYPESAN has reasonable performance for usage in production soft-
ware.

Figure 6.1 presents an overview of TYPESAN. The instrumentation layer con-
sists of hooks inserted by the compiler to monitor object allocations and potentially
unsafe casts, as well as a static library containing the implementations of those
hooks. To perform its task, this layer makes use of two services. The type man-
agement service encodes type information and performs the actual typecast verifica-
tion. It includes type information for all the types that may be used at run time. The
instrumentation layer uses it to look up type information for new allocations and in-
forms it whenever a cast needs to be checked. Finally, the metadata storage service
stores a pointer-to-type mapping and can look up the type information of an object
about to be typecast. This service allocates a memory area to store the mapping at
run time. It provides an operation to bind type information to a pointer and to lookup
a previous binding for a pointer.

All mechanisms that explicitly protect from type confusion will incur two forms
of run-time overhead: overhead for maintaining metadata (allocating and deallo-
cating objects) and overhead for explicit type checks at cast locations. We designed
TYPESAN to minimize the allocation/deallocation time overhead. C++ programs are
heavily affected by allocator performance, as implicitly shown by how large projects
tend to replace the standard memory allocator with high-performance allocators (tc-
malloc and other allocators in Chrome, jealloc in Firefox). Many of the objects being
allocated.may.also.never.be subject to downcasts, making it even more important to
minimize the impact of type tracking on such objects.

110 CHAPTER 6. TYPESAN

program

instrumentation

gettypeinfo bind
\ checkcast lookup

type management metadata storage

type information pointer mapping

Figure 6.1: Overview of TYPESAN components.

In order to meet these requirements, TYPES AN relies on a clean, uniform front-
end design that flags allocations and casts to the back-end system but introduces
a completely different mechanism to track type information, called the metadata
storage service in our design. Our metadata storage service builds on the memory
layout and structure inherently provided by the allocator and uses this structure to
reduce the access overhead (“aligning” objects with their metadata). Compared to
existing disjoint metadata storage layers that use different forms of lookup functions
from red-black trees to hashing for pointer range queries, our approach offers fast
constant-time updates and lookups.

For the type checking instrumentation and related data structures, we use a de-
sign focused on simplicity and cache-efficient traversal. This design is effective even
for workloads with an extremely high number of casting operations. Furthermore,
for performance-sensitive applications, safe operations can be blacklisted or an ap-
proach like ASAP [131] can trade off security against acceptable overhead. This is
another key motivation to minimize allocation-time overhead, as it does not scale
with the number of instrumented casts in a program, acting as residual overhead
instead.

Lastly, the instrumentation layer and the metadata storage service are connected
by the instrumentation layer, which uses the Clang/LLVM compiler framework [81]
to track allocations, instrument cast operations and extract type information. The
instrumentation was designed with completeness in mind, following code patterns
discovered in real-world programs as well as basic C/C++ constructs expected to be
supported. Our instrumentation also allows full C-C++ inter-operability, a novelty
compared to state-of-the-art solutions. This is important as some SPEC programs
mix.C-style allocation. with.C++ classes and browsers also use a mixture of C and
C++ code.

6.5. INSTRUMENTATION LAYER 111

6.5 Instrumentation layer

In this section we discuss the design of TYPESAN’s instrumentation layer. The
instrumentation layer interacts with the TYPESAN-hardened program by inserting
hooks at relevant locations. We first consider the instrumentation of allocations, in-
cluding the types of allocations we support to be able to track run-time object types
with high coverage. Then, we discuss the instrumentation of typecasts to be able to
introduce type checks.

6.5.1 Instrumenting allocations

TYPESAN adds a compiler pass to LLVM [81] to detect object allocations and in-
sert instrumentation to store the corresponding pointer-to-type mapping. For each
allocated object we store a pointer corresponding to the type layout of the object
as a whole. However, keep in mind that downcasts in C++ might be applied not
just to the allocated object pointer, but also to pointers internal to a given allo-
cation range, specifically in the case of composite types (arrays, multiple inheri-
tance, nested structs/classes). For example, an object of class A containing objects
of classes B and C can be cast to B* using the original pointer while a cast to C* re-
quires an offset to reference the correct member of class A. In this scenario, the type
of the internal pointer differs from the type associated at the allocation time, which
we need to account for in the design. For performance reasons, we chose to keep the
instrumentation of the allocations as simple as possible and to defer handling com-
posite types to the check operation itself (discussed in Section 6.6). This approach
still introduces two additional requirements to our design. First, the metadata stor-
age service must be able to retrieve the mapping for internal pointers (discussed in
Section 6.7). Second, the checker needs access to the offset within the class defi-
nition corresponding to the internal pointer. To support the latter, we also track the
base pointer of the allocation besides the type mapping. This design results in sim-
ple and low-impact instrumentation, using the metadata storage service to only store
two pointers for each allocation in the program. In the following, we describe the
allocation types we support as well as their motivation.

In C++, objects may reside in global memory, stack memory, or on the heap.
These three kinds of objects have different lifetimes and we therefore instrument
them differently. However, other than the location where we insert the hooks to
instrument the allocation, the single uniform metadata storage service allows us to
to treat objects in different memory areas equally. This simplifies our solution and
improves performance because TYPESAN must not determine where a pointer lives
before looking it up.

The initialization and reuse of the mappings in object metadata depend on the
object’s memory area. For instance, we can initialize the mappings for global objects
once. using global constructors.. However, for stack and heap objects, we need a
dynamic approach.

112 CHAPTER 6. TYPESAN

In the case of stack objects, we need to notify the metadata storage service to
take control over the object. These objects are not put on the regular stack but are
instead moved to a specific memory area where metadata tracking is enabled (see
Section 6.7 for details on this operation). With this change, we can use the metadata
storage service to create a mapping from the new object pointer to its metadata at
allocation time. This design decision of moving the objects of interest to a separate
location brings additional benefits from a tracking perspective, since the memory
location occupied by a previously tracked stack object will only be reused for another
tracked object. During allocation, the new object will overwrite the old metadata,
removing it from the system permanently. This allows us to persist the metadata
mapping after the lifetime of a stack object, removing the need for explicit cleanup.

A special class of stack objects (often ignored in existing solutions) arises when
the program passes classes or structs by value as function arguments. To address this
special case, TYPESAN uses the same approach applied by the current SafeStack
implementation in LLVM, moving such objects to a separate stack'.

Not all stack objects need tracking and we optimize our solution by omitting
allocation instrumentation wherever we can prove that the program will never cast
the allocated stack objects. To be conservative, we verify whether the function itself
or the functions it may call perform any relevant casts. We assume that any indirect
(including virtual) or cross-module function calls may perform downcasts, because
for these cases we cannot statically determine that they do not. Using this approach,
we reduce overhead without missing any checks. It is worth noting that our approach
is more conservative than CaVer’s, which optimistically considers that such callees
never attempt casts within their respective call-graphs?.

For heap objects, we add instrumentation after calls to the new and new[] op-
erators as well as the traditional malloc family of allocation functions. Although
C++ structs and classes are expected to be allocated using new (to ensure calls to
the appropriate constructors), we observed that one of the four SPEC benchmarks
with downcasts, uses malloc/realloc for allocating its C++ objects. Specifically,
the soplex benchmark uses malloc/realloc to handle allocations within its core
DatasSet class, which acts like an object pool. Other classes, such as SVSet, main-
tain pointers to objects managed by a particular DataSet. As these pointers are also
subject to downcasting, it is critical to track malloc/realloc in order to have type
information available for checking. Tracking heap deallocation is not necessary as
we built the metadata storage service to be robust and to clean stale metadata. This
ensures that such metadata cannot influence type checks in case of an accidentally
missed deallocation. More details can be found in Section 6.7.

While inferring the allocation type and array size is trivial for new and new [] (as
it is part of the syntax), this is more complicated for the malloc family of functions.
We traverse the intermediate representation code to look for cast operations applied
to the resulting pointer to find the allocation type. This method might fail for type-

'http://reviews.1lvm.org/D14972
2We reported this issue to the authors of CaVer.

http://reviews.llvm.org/D14972

6.6. TYPE MANAGEMENT SERVICE 113

agnostic allocation wrappers, but such wrappers can easily be added to the set of
allocation functions which we track. Array allocations can be tricky when trying to
infer the element count from a malloc-like call-site, but our tracking scheme was
designed to be agnostic to array sizes, thus mitigating potential issues. In practice
we found no coverage issues when evaluating TYPESAN against SPEC, showcasing
our ability to track relevant heap objects with our solution.

An interesting point in heap allocations is support for allocations within the stan-
dard template library (STL), which countless applications use for their core data
structures. Luckily, STL’s template-based design means that all the code related to
data structures is located within headers included into every source file. This in-
cludes all their allocation wrappers, which are also templated and instantiated on a
per-type basis. We confirmed that our instrumentation correctly picks up the allo-
cations within the STL data structures and we successfully check the downcasting
operations applied to the individual elements.

6.5.2 Instrumenting typecasts

Whenever TYPESAN encounters a downcast operation (from a base class to a de-
rived class), it inserts a call to our typecasting verification function. Such a cast is
present in the code either when performing a static_cast operation between ap-
propriate type or when using an equivalent construct such as static C-style casts. In
practice, downcasting can exhibit two types of behavior and we optimize our checker
to support each one specifically. In the general case, the result of the static cast is
the source pointer itself (with no added offset), but with a new source-level type.
This happens when the source base type is the primary base class of the derived
type, which is always the case when casting without multiple inheritance. In this
case, the TYPESAN instrumentation calls the checker with the value of the pointer
and an identifier corresponding to the destination type. If classes use multiple in-
heritance it can happen that a cast operation occurs from a secondary base class to
a derived type. In this scenario, a negative offset is added to the source pointer as
transformation from an internal pointer (to the secondary base) to the base pointer
of the object. The checker needs information about the resulting pointer to infer
the appropriate offset within the structure layout, but in case of type confusion the
negative offsets might make a valid pointer go out of bounds, making it impossible
to infer the appropriate type information for the object pointed to. For this reason,
TYPESAN calls a second version of the checker in this instance, which takes both the
source and destination pointers as well as the type identifier for the resulting type.

6.6 Type management service

TYPES AN.manages.metadata on.a per-allocation basis. Every block allocated by
a single malloc call, new operator, global variable, or stack variable is associated

114 CHAPTER 6. TYPESAN

with at most a single pointer to a type information data structure. This data struc-
ture therefore encodes all permissible casts using pointers pointing into the allocated
block. Any object can be cast back to itself using the original pointer, but com-
position and inheritance create additional opportunities for casts. For example, a
pointer to an object can be cast to any of its base classes and a pointer to a field
of an object can be cast to the type of the field (and transitively to any type on the
inheritance chain). In this section, we discuss the data structures used to encode this
information.

The type management service is responsible for associating type layouts with
allocation sites and using these layouts to validate downcast operations. Type check-
ing at its core can be divided into two steps. The first one is the ability to infer the
allocation-time type associated with the pointer resulting from the typecast. This is
the most derived type associated with the particular offset (from the pointer to the
allocation base) within the original allocation. Once this information is known, the
second part of the type check involves the comparison of the allocation-time type
with the type specified in the cast. The layout of the latter must be compatible with
the former for the cast to be valid. The data structures employed by this service
share the same purpose as the THTable structure in CaVer, but we further optimize
the type checks by dividing it in in two phases.

In the following sections, we describe the data structures TYPESAN uses to per-
form these operations.

6.6.1 Type layout tables

Type layout tables describe each relevant offset within an allocation to enable fast
lookups of the offset-specific type information during a check. Specifically, a type
layout table is a list of mappings of unique offsets to data fields corresponding to
nested types. The list (array) starts with an entry for offset O containing the unique
hash corresponding to the type as a data field. The layout tables incorporate nested
types in one of two ways. As a first option, the nested types can be flattened into
a type layout for good cache efficiency during traversal. Alternatively, they can
be separated via an indirection for better space efficiency. Flattening a nested type
involves injecting an offset-adjusted copy of its type layout into the containing type,
where its type layout is copied and adjusted into the layout of the containing type.
An avid reader may notice that flattening can invalidate the property mentioned
earlier that offsets in the type layout table are unique. After all, a nested class might
occur at offset O (for example with primary base classes). This is where the second
part of our type check, the layout compatibility check, comes into play. A class
which includes a nested class at offset O is practically layout compatible with the
latter. Intuitively, if the next type class has another class at offset 0 of object, then
we can always use the object as representative for both types. TYPESAN tracks this
relationship.in type relationship tables (see Section 6.6.2). Thus, the type layout
table only needs to track the (unique) "derived-most" type for matching offsets.

6.6. TYPE MANAGEMENT SERVICE 115

As mentioned earlier, flattening is not compulsory, since the type layout table
also supports indirection. In this mode, the data element of a particular entry includes
a pointer to the type layout table corresponding to the nested type. In addition,
TYPESAN adds a sentinel element to the type table to mark the end of the nested
type. This allows the traversal code to infer quickly whether or not it should follow
the indirection. It skips the sentinel element if its offset overlaps with an existing
entry in the table to maintain uniqueness.

Flattening generally improves performance at the cost of space. While TYPE-
SAN mostly uses the flattened mode, it uses the non-flattened mode to generate an
efficient array abstraction as the array length may be dynamic (in the lack of a way
to optimize for performance we optimize for space). In particular, it replaces each
nested array with a single indirect entry to the type layout table of the array element
type, allowing TYPESAN to support nested arrays of any size, without degrading
checking speed.

The property of enforcing unique offsets in the type layout table allows us to
implement efficient traversal by ordering the entries by offset. During indirection,
the type management service updates the offset that is being searched to match the
follow-up type layout table (which is just a subset of the original type). In the case
of a nested array, it updates the offset to represent the offset into the corresponding
array element, instead of the array itself—using the array-stride as input. This is
supported, by including the overall size of the type (including requested alignment)
as part of the type layout table.

When the instrumentation adds metadata at an allocation site, it simply requests
a type layout table that corresponds to the type that is allocated. Type layout ta-
bles are generated once for each type, by recursively traversing the type information
in LLVM to find all nested elements. For potential array allocations, it marks the
pointer to the type layout table to signal additional processing of the offset. This
processing is identical to how we deal with nested arrays. Accidentally marking an
allocation as being of type array does not affect correctness, it just involves a couple
of extra instructions being executed during type lookup. As such our static analysis
does not have to be complete as long as it is conservative in identifying allocations
of single elements.

6.6.2 Type relationship tables

In the second stage of the type check we check for raw pointer compatibility be-
tween the type identified for the pointer and the type defined in the cast. Such com-
patibility typically happens between derived classes and their primary base class. As
mentioned earlier, another case of compatibility happens between unrelated types if
one of the types is nested in the other at offset 0.

Furthermore, CaVer defined the concept of phantom classes: derived classes with
no.additional members.compared.to.their base class. Sometimes the program down-
casts base classes to such phantom classes, resulting in benign bad casts. Thus we

116 CHAPTER 6. TYPESAN

also include phantom classes in our compatibility model. Using the compatibility
model, we generate a set of type hashes corresponding to the compatible types for
each class in the program and refer to it as a type relationship table. Once TYPE-
SAN has extracted the type of a pointer from the type layout table, it checks the
corresponding type relationship table for the membership of the type defined in the
cast. The operation needs to find an exact match to verify a cast. If it finds no match,
it reports an error of a mismatched type.

Currently we implement sets as simple vectors, with hashes ordered according
to the type hierarchy. We found this solution to be adequate in terms of speed, but
we can easily replace it with alternative set implementations, such as the fast LLVM
bitset variant. Doing so is easy as the type relationships table is conceptually nothing
more than a set as a result of the split of the type information into separate layout
and relationship tables.

By having the phantom classes be first-class members of the type relationship
tables, we ensure uniform support for them without performance degradation. In
contrast, the publicly released CaVer code requires a type check restart for every
phantom class if normal inheritance fails to find a match.

6.6.3 Merging type information across source files

Generating large amounts of type information may necessitate merging across dif-
ferent source files—an expensive and potentially difficult operation. We rely on
the One Definition Rule (ODR) in C++ to minimize the need to merge information
across the project. ODR states that every class definition across all source files linked
together needs to be identical. C++ also requires nested and base types to be fully
defined in the source files that use them. As a result, the type layout information for
the same type within different source files is always identical. The same is true for
the type relationship tables—except their phantom class entries. Since the phantom
classes represent derived classes, the set of phantom classes can easily change from
one source file to another, and merging may be necessary. TYPESAN uses a strategy
where it only needs to merge these entries in the type relationship tables to minimiz-
ing the merging cost. Any program violating the ODR would trigger error reports in
TYPESAN. This would be correct, since violating the ODR is type confusion.

6.7 Metadata storage service

In this section, we discuss the metadata storage service, which handles storage of
metadata at run time. This service allows us to map from object base addresses
to type layout tables at run time. Key requirements for our metadata storage ser-
vice are (i) fast update operations and (ii) range-based lookups (to support interior
pointers.due to.composition)..Related work [84; 7] has used alignment-based direct
mapping schemes to track complex metadata, relying on dedicated custom memory

6.7. METADATA STORAGE SERVICE 117

allocators. Such systems often run into problems for stack-based memory alloca-
tions [84] where the allocator has no detailed knowledge of allocations. As a result
we designed METAlloc [66], a novel object tracking scheme, based on variable com-
pression ratio memory shadowing, which solves these issues and allows us to have
an efficient and uniform metadata storage service for all allocation types.

Variable compression ratio memory shadowing relies on the assumption that all
objects on a certain memory page share the same alignment. A uniform alignment
guarantees that every alignment-sized slot within the page corresponds to a single
object, enabling the tracking of metadata at the level of slots instead of objects,
while preserving correctness. Each page can thus be associated with an alignment
and a metadata range, including as many entries as the number of alignment-sized
slots in the page. Such a mapping simplifies storage of metadata and allows us to
assume a certain layout for objects on a per-page basis. Given a page table-like
infrastructure, the mapping allows finding metadata corresponding to any particular
pointer in constant time, by using the alignment to look up the slot index and to
retrieve the metadata stored for the appropriate slot. This mapping also mirrors
traditional page tables as the alignment and the base address of the metadata range
can be compressed into a single 64-bit value (since pointers only require 48 bits).
We call this data structure the metadata directory. Figure 6.2 shows the mapping
operation from any pointer to the corresponding object metadata.

An update operation with this metadata results in finding the metadata for the
base address of the object and then updating all entries which correspond to the
object range. The number of entries which need to be updated is the number of
alignment-size slots that the object spans across, making it critical to select the
largest possible alignment to improve update performance. This is where the vari-
able compression ratio comes into play, with large objects having larger alignments,
thus their metadata is compressed relative to their size. The system also works with
the default 8-byte alignment of objects in existing systems, but the update operation
would end up too costly for stack and heap objects. Using alignments which are too
large can also generate increased memory fragmentation resulting in unnecessary
performance overhead, making it critical to select the most appropriate alignments.

In the case of global memory, the overhead introduced by the update operations
rarely affects the performance of a running program, thus we decided to leverage
the existing 8-byte alignment applicable for global objects. We update the metadata
directory entries to track all loaded sections whenever we detect that a new shared
object has been loaded into the address space of the program.

For heap allocations, tcmalloc [49] (the allocator used by the Chrome browser
and other Google products) already ensures that every memory page under its control
contains only objects of the same size-class and alignment. It enforces this property
to efficiently generate free lists, thus ensuring our assumptions for free, without
needing to perform any changes to the allocation logic. We only extended tcmalloc
to.track the metadata directory.entries whenever a memory page is associated with a
certain size-class, which happens rarely in practice.

118 CHAPTER 6. TYPESAN

Pointer

Page Page offset

Alignment

Metapage .
Table Metadata region

Figure 6.2: Mapping from a pointer to a metadata entry. The page component is used to look up
the start address of the metadata region and the alignment. While the latter together with the
page offset is used to compute the offset within the metadata region.

Stack allocations are challenging, as they can be subject to ABI restrictions. We
mitigate this limitation by moving relevant objects to a secondary stack similar to the
operating principles of SafeStack [80]. SafeStack is effective at moving dangerous
stack allocations to a secondary stack with practically no overhead and minimal
impact on application compatibility. We use the instrumentation layer, as mentioned
earlier, to tell the metadata storage service about stack objects, which are then moved
to a secondary stack tracked by the metadata directory, where we enforce a 64-byte
alignment for each object. ABI restrictions are not applicable, since all tracked stack
objects are local variables, whose location can be freely chosen by the compiler. The
64-byte alignment is reasonable as we only move a small subset of stack objects, thus
overall memory fragmentation of the program is limited.

As mentioned earlier in Section 6.5, deallocation of heap objects is handed inter-
nally by the metadata storage service and no extra instrumentation is needed. While
the stack contains only tracked objects, thus metadata will always be up to date with
allocations, tcmalloc does manage all heap objects, including untracked ones. As
such, we extended tcmalloc to conservatively assume that every new allocation is
untracked and to clear stale metadata associated with any new allocation if it detects
such. This approach minimizes the overhead when metadata is used sparingly, while
ensuring that stale metadata can never affect untracked allocations.

Moreover, our solution is not affected by thread concurrency. The metadata di-
rectory is only updated when memory is mapped in from the system. At this point all
the entries read/written during this operation are the ones corresponding to the allo-
cation range, which is still in sole control of the running thread. The metadata entries
are also updated only during object allocation and the entries written are unique to
the allocation range, thus they do not interfere with concurrent lookups. The update
operation. depends.only on.the metadata directory entry corresponding to the pointer
itself, which cannot be subject to a concurrent write.

6.8. LIMITATIONS 119

6.8 Limitations

Our approach is based on an LLVM-instrumentation pass that reasons on the clang
and LLVM IR level, therefore source code in either C or C++ is required. Any
allocations or casts in assembly are not supported.

As stated in our treat model (and similar to related work), we assume that the
attacker has no unrestricted write primitive at their disposal. We therefore do not
protect our metadata against malicious writes. Any metadata protection mechanism
is orthogonal to this work and equally applies to other protection systems which
complement TYPESAN.

To support combined protections, TypeSan deliberately imposes as few restric-
tions and changes in the memory layout as possible. It already integrates with
SafeStack, a fast stack protection solution offered by compilers today. Similarly,
while TypeSan makes a design assumption about the heap allocator, it is compati-
ble with arguably the two most commonly used custom memory allocators: tcmal-
loc (Chromium) and jemalloc (Firefox and Facebook). When combined with other
memory safety solutions, TypeSan can preserve metadata integrity by construction.
When deployed standalone, our design is amenable to existing low-overhead meta-
data protection techniques, such as APM [56] or write-side SFI (e.g., pointer mask-
ing). The overhead of such techniques is amortized across all defense solutions. For
example, if we employ SafeStack and we expect SafeStack (already in clang) to be
adequately protected moving forward due to recent attacks [56; 100], TypeSan can
benefit from the same metadata protection guarantees at no additional cost. Note
that TYPES AN tolerates arbitrary reads as we do not rely on secret information hid-
den from the attacker.

Custom memory allocators (CMAs) can prohibit TYPESAN from appropriately
tracking heap allocations. Unfortunately, this is a fundamental limitation for in-
strumentation systems which rely on object information tracking. TYPESAN uses
tcmalloc as the back-end allocator. This is a suitable replacement for other gen-
eral purpose allocators, but objects allocated within CMAs (such as pool or SLAB
allocators) will not be tracked by our system.

6.9 Evaluation

To show that TYPES AN achieves higher coverage and lower overhead than previous
solutions, we evaluated our prototype using a number of demanding CPU-intensive
(and cast-intensive) workloads. We test Firefox because browsers are a common
target for attackers of type confusion vulnerabilities, given the fact that they are usu-
ally written in C++ for performance reasons and have a large attack surface because
of the fact that they provide a substantial API to foreign Javascript code. We bench-
marked Firefox using the Octane [S57], SunSpider [58], and Dromaeo [46] bench-
marks. Octane and SunSpider focus on Javascript performance, while Dromaeo has

120 CHAPTER 6. TYPESAN

subtests for both Javascript and the DOM. Moreover, we implemented our own mi-
crobenchmarks to isolate the overhead and report worst-case figures for TYPESAN
and existing solutions. In addition, we run the SPEC CPU2006 C++ benchmarks,
which all heavily stress our allocator instrumentation and some (e.g., dealll and om-
netpp) our typecast instrumentation.

In our evaluation, we consider a number of different system configurations. Our
baseline configuration compiles with Clang 3.9 [81] at the default optimization lev-
els. The baseline is not instrumented but does use the tcmalloc [49] allocator to re-
port unbiased results, given that tcmalloc generally introduces a speedup that should
not be attributed to TYPESAN. In addition to the baseline, we have the TYPESAN
and TYPES AN-res configurations. The former instruments every possible cast while
the latter does not instrument any casts. The TYPESAN-res configuration shows
to what extent a system like ASAP [131] can reduce the performance impact of our
instrumentation (trading off security) when only a small performance budget is avail-
able. We ran our benchmarks on an Intel Core 17-4790 CPU with 16 GB of RAM,
using the Ubuntu 15.10 Linux distribution.

6.9.1 Performance

Microbenchmarks

To verify that TYPESAN provides low allocation-time and typecast-time overhead,
we created microbenchmarks that measure how long these operations take, both on
the stack and on the heap. To compare our results against state-of-the-art solutions,
we compiled CaVer [84] from source [82] and configured in the same way as TYPE-
SAN—except that we do not use tcmalloc since CaVer ships with its own custom
allocator. To prevent the target operations from being removed by optimizations, we
switched to the -01 optimization level for this experiment. To isolate the overhead,
we measured the impact of (i) the number of allocated stack objects and (ii) the ob-
ject size. The former is important since CaVer tracks stack objects with red-black
trees, whose performance degrades with the number of objects. The latter is impor-
tant since TYPESAN needs to initialize multiple metadata entries for large objects,
incurring more overhead.

Figure 6.3 depicts the impact of the object size on allocation performance when
no other stack objects are present. Allocating an object on the stack is almost instan-
taneous for the baseline and takes a fixed but long time for CaVer. For TYPESAN,
allocation time on the stack is proportional to the object size as multiple metadata
entries need to be initialized for large objects. However, even for objects as large as
8KB, TYPESAN is still faster than CaVer. Small objects up to 128 bytes take only
0.5ns extra to allocate with TYPESAN, while CaVer adds at least 48.8ns even for
these small (and common) allocations. On the heap, allocation time grows linearly
with the allocation.size in.all cases..Overall, TYPESAN is close in performance to
the baseline while CaVer adds considerable overhead. For heap allocations up to 128

6.9. EVALUATION 121

200
%]

£

o 150

S

5

S 100

k)

O

o

O 50 kA A

=

s

o 0

oy

o 16 128 1024 8192

object size (bytes)

—@— baseline-stack —fll=typesan-stack
—a— caver-stack baseline-heap

typesan-heap caver-heap

Figure 6.3: Allocation performance as a function of allocated object size.

bytes, TYPESAN adds at most 7.0ns overhead while CaVer adds at least 26.7ns.

We believe that it is unlikely for programs to frequently allocate large, bloated
classes without using them and thus hiding the allocation overhead. As further miti-
gation to the scaling based on the stack object size, it is possible to extend TYPESAN
to use additional secondary stacks with increased alignments for such large classes.
These results support our claims that TYPESAN is particularly suitable for applica-
tions that allocate many objects, especially on the stack.

Figure 6.4 and Figure 6.5 show the impact of the number of allocated stack
objects on allocation and typecast performance (respectively), using an object size
of 16 bytes. The overhead patterns are in the same region for both scenarios. CaVer’s
overhead on the stack increases with the logarithm of the number of objects (due to
the use of red-black trees) while TYPESAN’s does not depend on the number of
allocated objects. Even at relatively low allocation counts, CaVer’s stack allocations
are much more expensive than TYPESAN’s.

For every typecast, in turn, TYPESAN adds an overhead of only 3.8ns, regardless
of whether the object is allocated on the stack or on the heap and regardless of the
number of allocated objects. CaVer’s typecast overhead is higher in all cases. In
particular, the heap overhead is a constant 13.6ns, while the stack overhead starts at
11.0ns and increases with the number of allocated objects.

Performance overhead

Table 6.5 reports our performance on the SPEC CPU2006 C++ benchmarks [68] and
Firefox. The first four SPEC benchmarks perform static typecasts while the others
do not. In the latter case, the overhead stems from TYPESAN having to still track
objects.that cannot be statically. and.conservatively proven not be typecast during the
execution. In the default configuration, overheads range from negligible to moder-

122 CHAPTER 6. TYPESAN

200
150
100

50
bk

0 L

1 4 16 64 256 1024 4096
object count

object allocation time (ns)

—@— baseline-stack —fll=typesan-stack
—&—caver-stack —@—baseline-heap

——typesanheap - caver-heap

Figure 6.4: Allocation performance as a function of allocated object count.

100
80
60
40
20

o B0

1 4 16 64 256 1024 4096

object cast time (ns)

object count

—@— baseline-stack —fll=typesan-stack
—a&—caver-stack —@®—baseline-heap

—fi—typesanheap =& caver-heap

Figure 6.5: Typecast performance as a function of allocated object count.

ate and the overheads on the benchmarks reported by CaVer [84] are much lower.
In particular, CaVer reported four times our overhead (29.6%) on xalancbmk and
20.0% on soplex while ours is negligible. Povray stands out for having high over-
head despite its lack of casts. This is mostly due to the many stack objects allocated
in a recursion between the functions Ray_In_Bounds and Intersection. Other
than this special case, overheads are lowered by reducing the number of checks (a
la ASAP [131]). The negative overhead for namd may be explained by variations in
memory layout [94]. For example, in all but one case, our TYPESAN-res configura-
ion.can.greatly bring down.the overhead. The overhead for Firefox is unfortunately
romaeo DOM workload. The high overload is

6.9. EVALUATION 123

casts | TypeSan TypeSan-res
dealll yes 30.8 (0.2) 3.6 (0.1)
soplex yes 1.8 (0.7) 1.5 (0.8)
omnetpp yes 272 (1.7) 24 (3.0
xalancbmk | yes 7.1 (04 44 (0.3)
namd no 06 (0.1) -0.5 (0.1)
povray no 239 (03) 226 (0.2)
astar no -0.2 (0.5 0.1 (0.5
geomean yes 13.2 6.4
geomean both | 12.1 4.6
ff-sunspider 406 (1.4) 114 (1.1
ff-octane 18.6 (5.1) 2.8 (0.9
ff-drom-js 124 (1.5) 40 (1.7)
ff-drom-dom 712 (1.5) 435 (0.6)
geomean 33.9 14.3

Table 6.5: Performance overhead on the SPEC CPU2006 C++ benchmarks and Firefox (%),
stdev in parentheses.

most likely due to the fact that Firefox performs many object allocations, especially
on the stack. On average, however, our overhead is close to half of the overhead re-
ported by CaVer (64.6%). The results for the TYPES AN-res configuration show that
this overhead can be reduced even further by selectively instrumenting casts. Note
that our coverage on Firefox is considerably lower than on the other benchmarks
mostly due to the use of CMAs (though still much higher than the competition, see
Table 6.8), so extending our solution to cover the remaining casts could increase the
overheads reported here.

Memory overhead

Table 6.6 reports our memory usage on the SPEC CPU2006 C++ benchmarks and
Firefox, measured in terms of binary size (static) and the maximum resident set size
(dynamic). While TYPESAN generally introduces nontrivial memory overhead, we
believe this is worthwhile (and acceptable in practice), given the security it offers
with negligible performance overhead. Moreover, compared to CaVer [84], our rel-
ative run-time memory overhead is much lower for the two SPEC benchmarks they
considered (9% vs. 56% on xalancbmk and 1% vs. 150% on soplex). It is unfor-
tunately impossible to compare our memory overhead on Firefox as we measured a
different version than the one reported by CaVer. The negative memory overhead for
Dromaeo-DOM may be explained by the fact that this benchmark runs for a fixed
amount of time, completing fewer runs when the browser is slowed down through
our instrumentation. Our memory overhead is mostly due to the metadata storage
service.itself. As future work, it is.possible to share this infrastructure and its mem-
ory overhead with other defenses that maintain per-object metadata (e.g., bounds

124 CHAPTER 6. TYPESAN

binary size resident set

base ts inc% base ts inc%
namd 0.3 0.6 81.6 50.9 56.9 11.7
dealll 3.1 52 693 818.6 1453.1 775
soplex 0.4 0.8 1127 | 5609 568.4 1.3
povray 1.0 14 452 8.7 18.8 1174
omnetpp 0.6 1.2 904 157.8 2245 423
astar 0.0 0.3 597.1 3104 3144 1.3
xalancbmk 4.1 7.6 858 | 4513 4927 9.2
geomean 118.0 31.7
ff-sunspider | 159.1 318.6 100.2 | 491.1 9282 89.0
ff-octane 159.1 318.6 100.2 | 8444 15344 81.7
ff-drom-js 159.1 318.6 100.2 | 5722 1005.8 75.8
ff-drom-dom | 159.1 318.6 100.2 | 4232.0 4015.7 -5.1
geomean 100.2 19.9

Table 6.6: Memory usage for the SPEC CPU2006 C++ benchmarks and Firefox (MB),
ts=TYPESAN.

checking), reducing the memory usage of the combined system.

6.9.2 Coverage
Typecast coverage test suite

To test the correctness of TYPESAN and future type-confusion detection systems,
we developed a test suite for a wide range of different code constructs that might af-
fect typecast sanitization. The test cases covered by the test suite are inspired by our
extensive experience with real-world C++ programs. Our test suite is available as
part of the open source repository of TYPESAN to help future researchers in testing
their systems. The test suite verifies correctness using three different dimensions:
allocation type, composition type, and cast type. The test suite allows different con-
figurations from each dimension to be combined and tested simultaneously.

Every test allocates an object of type AllocationType using the desired con-
figuration. It then sends a pointer to the allocated object to a function, which derives
a pointer to a member of type BaseType nested into AllocationType with the
desired composition type configuration. Finally, we downcast the pointer to a type
derived from BaseType, called DerivedType. We implement the functions in dif-
ferent source files to uncover any potential bugs in interprocedural cross-module
static analysis in the checker. Other than false negatives, the test suite also checks
for false positives, by replacing the BaseType with a derived type of DerivedType
in AllocationType.

Our test suite considers.the following allocation types: stack object, stack array,
struct argument passed by value, global object, global array, new / new[] (including

6.9. EVALUATION 125

allocations casts types
heap stack global
dealll 322 5,231 1,125 716 1,238
soplex 40 447 161 2 311
omnetpp 441 85 623 449 568
xalancbmk 414 3216 2,263 | 2,688 1,768
namd 10 18 4 0 16
povray 36 255 200 0 257
astar 13 11 7 0 18
firefox 2,458 185,908 42,710 | 68,369 | 38,764

Table 6.7: Instrumentations.

overloaded operator), and malloc/calloc/realloc (including arrays). For array types,
we also consider multidimensional arrays where possible. We consider the following
composition types (the relationship of BaseType with respectto AllocationType):
equivalence, nested, nested array element, and inheritance (primary, secondary, and
virtual). Finally, we support the following cast types: from primary base to derived
type, from secondary base to derived type, and from primary base to a phantom class
of the real type.

TYPESAN successfully passes all combinations of these configurations, show-
casing our coverage on a wide range of code constructs. For comparison, we also
tested CaVer [82] and found that it only passes the following allocation types: global
object and new / new[] (including overloaded operator). CaVer also reported false
positives when nested arrays were used for the composition. We contacted the au-
thors about all the tests that failed, but we have not received an explanation or a fix
for these issues.

Coverage on benchmarks

Table 6.7 shows the number of code locations where we insert instrumentation. Note
that the information about allocations is based on the source code because it cannot
be easily recognized in the binary due to inlining. The number of cast checks and
types are based on the final binary to make them comparable to CaVer [84]. The
number of checks in the source code is considerably lower (for example 19,578 for
Firefox), presumably due to optimizations that cause code to be duplicated. Com-
pared to CaVer, we insert slightly fewer checks in Firefox, more in Xalanc and the
same number in Soplex. This may be due to differences in versions or compiler (set-
tings). We generate more type information than CaVer on Firefox and Soplex, but
less on Xalanc. This may be due to differences in representation of type information.
In all cases, we insert more instrumentation than UBSan does [84].

Table 6.8 shows the typecast coverage of TYPESAN compared to state-of-the-
art solutions, CaVer [84]. in particular. Coverage percentages are computed as the
fraction of non-null casts correctly checked by the system—missing checks are due

126 CHAPTER 6. TYPESAN

allocations casts
TypeSan CaVer | non-null TypeSan % CaVer %
dealll 597m 3,596m 3,596m 100.00 0 0.00
soplex 21m 1,058 209k 209k 100.00 0 0.00
omnetpp 264m 2,014m 2,014m 100.00 0 0.00
xalancbmk 4,538m 278k 284m 254m 89.52 24k 0.01
ff-sunspider 463m 293m 92m 3143
ff-octane 967m 991m 122m 12.35
ff-drom-js 15,824m 12,976m 3,032m 23.37
ff-drom-dom | 301,540m 46,961lm 21,253m 45.26
ff-total 318,793m 15,530k | 61,222m 24,500m 40.02 1,077k 0.00

Table 6.8: Typecast coverage.

to inability to correctly track the corresponding object. As such, it is an indication
of the security provided by the system. TYPESAN reports over 89% coverage on
each of the relevant SPEC benchmarks, and 100.0% on all but one. Unfortunately,
coverage is not as high on Firefox. We have found that this is due to the widespread
use of pool allocators, which violate the assumption made by our system (as well
as other object tracking systems) that objects are allocated individually. This issue
could be solved by modifying Firefox to allocate objects directly. This may be vi-
able performance-wise due to the allocation performance offered by tcmalloc. While
CaVer does not report per-benchmark results, they report a total of 1,077k verified
casts. As such, our coverage is approximately more than 300,000 times as high.
For both SPEC and Firefox, Table 6.8 shows that we track many more allocated
objects than CaVer. This explains that we are able to check more casts despite a sim-
ilar number of instrumentation sites—casts can only be checked if type information
metadata was stored at allocation time. As shown in Table 6.8, we provide security
far superior to the current state of the art while improving performance at the same
time.

6.10 Related work

To the best of our knowledge, UBSan [105] and CaVer [84] are the only other sys-
tems that perform verification at cast time like TYPESAN. Our system is inspired
by CaVer and has considerable similarities with it. In particular, it shares the same
benefits with regard to UBSan: we do not rely on run-time type information (RTTI)
and therefore we can handle non-polymorphic classes and protect binaries without
the need for manually maintained blacklists. Moreover, as we have shown in our
evaluation, we introduce less overhead than CaVer, which in turn has shown by its
authors to be more efficient than UBSan.

Compared to CaVer, we have a similar instrumentation layer based on an LLVM
instrumentation pass,.but we have completely redesigned the metadata storage mech-
anism. In particular, we use a uniforin variable compression ratio memory shading

6.11. CONCLUSION 127

scheme with off-the-shelf allocation strategies, rather than a purpose built custom
memory allocator of the heap and the red-black trees used for the stack in CaVer.
Our approach is more efficient for both insertions (object allocations) and lookups
(typecast checks) because it does not require identifying the type of the allocation
(due to its uniform nature) and it does not incur the significant and non-linear over-
head that red-black trees bring to trivial stack allocations. Moreover, our solution
is not affected by thread concurrency. This is a major simplification compared to
CaVer, which uses per-thread red-black trees.

Another solution that achieves similar goals as ours is preventing calls through
incorrect virtual method tables (vtables). For example, Bounov et al. [19] present an
approach that can efficiently verify for each virtual call that the vtable is valid for the
static type through which the call is performed. This mitigates some type confusion
vulnerabilities, but such solutions cannot protect non-polymorphic classes because
they do not have vtables. Moreover, this solution only detects type confusion when
the object is subjected to a virtual call, thus missing potential memory corruption
from a mismatched layout in other parts of the code. Clang CFI [29] uses such
a system to check cast operations involving polymorphic classes, but there is no
publicly available evaluation of the system and it is still restricted to a subset of
downcast operations.

On binaries without source code, Dewey and Giffin [40] show how data flow
(reaching definition) analysis may help to determine bounds on vtables and detect
type confusion statically by ensuring that a virtual function call does not stray be-
yond the bounds of the vtable. As noted by the authors, their analysis is prone to
false positives and false negatives and therefore more suited to reducing the number
of type confusion bugs prior to deployment.

Finally, CFI [3] and other advanced protection mechanisms for forward edges
in C++ programs [127; 130; 129; 80] limit the wiggle room that attackers have to
divert control via indirect control transfers. However, as type confusion is mostly
a data problem, such solutions only address it partly. Similarly, VTable protection
schemes [140; 63], may check the types of virtual calls or the sanity of vtable point-
ers, but do not prevent the misuse of type confusion in general.

6.11 Conclusion

Type confusion vulnerabilities play an important role in modern exploits as shown
in recent attacks against Google Chrome or Mozilla Firefox. Existing solutions that
detect type confusion exploits are (i) incomplete, missing a large number of typecasts
and (ii) prohibitively slow, thereby hindering general adoption.

We presented TYPES AN, an LLVM-based type-confusion detector that leverages
an optimized allocator to store metadata in an efficient way to reduce the overhead
for updating metadata.. Building on. several optimizations for both the underlying
type checks and the metadata handling, we reduce the performance overhead by a

128 CHAPTER 6. TYPESAN

factor 3—6 compared to the state of the art. Our performance figures suggest TYPE-
SAN can be used as an always-on solution in practical settings. In addition, TYPE-
SAN is complete and no longer misses typecasts on either the stack or between C
and C++ object interactions. As we show in the SPEC CPU2006 benchmarks, such
interoperability issues between programming languages cause prior work to miss a
large number of casts.

Conclusion

Despite the best efforts of researchers to eliminate or mitigate software vulnerabil-
ities using a wide range of techniques, attackers still seem to possess the creativity
and technical prowess to overcome said mitigations in practice. As such, researchers
have to continuously innovate and adapt to keep one step ahead in this arms race.
Vulnerabilities can be tackled at different stages of software evolution, but it is im-
portant to understand how these options are complementary to each other, instead
of being exclusive. In practice the best defenses are the result of layering multiple
mitigation techniques on top of each other, to minimize the chance of a successful ex-
ploit. This dissertation makes contributions to such an end-to-end defense scenario,
investigating the effectiveness of existing techniques and proposing novel alterna-
tives wherever major deficiencies are discovered. In the following, we summarize
the key results of this dissertation.

1. Code artifact prioritization for security. We presented the potential for secu-
rity prioritization, an alternative idea to comprehensive testing, which aims to
prioritize the testing effort around code artifacts with the highest chance to con-
tain vulnerabilities. Typically such prioritization occurred as part of white-box
testing, with manual input from developers, but we showcase the possibility to
automate the process using source analysis. This idea lays the ground for effec-
tive modular testing, by automatically inferring the need to test certain individual
code artifacts and the potential to avoid other artifacts.

2. Guided fuzzing. We presented guided fuzzing, a new technique to restrict gray-
box fuzzing to certain pre-selected code artifacts. This process improves the scal-
ability of fuzzing significantly, by splitting the exponential state-space into man-
ageable chunks related to the individual code artifacts. Since typical software
carries.a lot of dependencies between its different components, guidance has to
occur on both the data and control planes to be effective. We implemented data-

129

~
.
2
Q
©
<
o

130 CHAPTER 7. CONCLUSION

flow tracking to learn about the data dependencies between the program inputs
and the individual code artifacts. Guided fuzzing can leverage this dependency
information to restrict the input space, which needs to be explored for this par-
ticular iteration. Furthermore we refined the guidance process, by implementing
a learning mechanism to directly infer information about control dependencies.
This allowed for further restrictions on the state-space via the control statements,
bringing the desired scalability to guided fuzzing.

3. Pointer-structure reversing. We presented a novel technique to detect and clas-
sify pointer-based data structures in binary programs without the use of debug or
symbol information. These data structures include linked lists and a range of bal-
anced/unbalanced trees for instance. The proposed technique offers a great deal
of flexibility on two axis. First of all, it extracts course-grained type information
based on usage information, making it independent of type reversing systems and
their potential limitation. Furthermore, it uses a series of normalization stages to
deal with variations in implementation details, while keeping the final classifier
simple and easy to reason about.

4. Correctness evaluation for control-flow integrity. We presented a novel white-
box testing framework for control-flow integrity solutions targeting vtable-based
call-sites within C++ code. The need for this framework arose from the promi-
nence of this protection mechanism in production compilers these days (already
part of GCC and in the works for Clang). The framework allows developers to
check if their protection variants respect all the possible corner-cases within the
C++ semantics and thus will work for any well-formed C++ program. It also
checks if the protection restricts the control-flow options to only the edges re-
quired by the language semantics. Solutions passing the latter check are deemed
to be optimal as further restrictions are not possible without the potential to break
program execution. Solutions which fail this check can then be compared against
the reference solution to evaluate their numeric effectiveness in practice.

5. Optimal control-flow integrity for C++. We presented a novel design for control-
flow integrity applied to vtable-based call-sites within C++ code. We used the
mistakes learned from existing systems as discovered by the proposed testing
framework to gain better understanding of the problem and to refine the original
designs. The proposed alternative fixes all the limitations we discovered, offering
optimal protection, while still ensuring full compatibility with the C++ seman-
tics. The run-time overhead is also reduced as part of the proposed changes,
a rare side-effect when increasing the strength of mitigation. These properties
make the new design applicable to replace the existing code within the GCC
compiler, beating out the existing code in all key characteristics.

6. Efficient metadata tracking. We presented variable compression-rate metadata
tracking a new technique to track object-level information during execution with

131

low memory and run-time overhead. It relies on recent developments in main-
stream memory organization, to avoid having to include a specialized heap al-
locator or without the danger of break existing ABIs. The metadata tracking
enables a wide-range of instrumentation techniques, including bounds checking,
type checking and dangling pointer detection, which seem more and more nec-
essary in an effort to counteract recent data-only attack. Our evaluations show
that the run-time overhead scales well with increased metadata sizes, making
the technique particularly effective in applications requiring complex metadata
to function.

7. Verifying type safety for C++. We presented a novel approach to validate poten-
tially unsafe casting within C++ programs using the previously discussed meta-
data tracking as a backbone. The approach shows great potential with very low
run-time overhead and no sacrifice to the desired coverage profile. The efficiency
of the metadata tracking enables further reduction of the overhead for applica-
tions, where coverage can be sacrificed to reach a particular performance goal.
The proposed design also represents a strong first step towards complete type
safety for C++ programs, as all the building blocks are now in place to enforce
it.

Future Directions

The problem of system security is never considered to be solved as malicious actors
always find new and creative avenues for their attacks. The techniques presented
in this dissertation are aimed to improve the state-of-the-art, but continued research
effort is required to stay one step ahead of attackers. Hopefully one day all our core
infrastructure is migrated to safe programming languages to at least avoid memory
corruption attacks, but until that point we are required to invest into detection and
mitigation systems as discussed in this dissertation. In the following, we highlight a
number of opportunities for future research directions.

1. Prioritization for a wide range of vulnerabilities. Our code artifact prioritization
was primarily designed to detect buffer overflow type vulnerabilities, but the idea
can be generalized to any class of bugs. Compiler-level static analysis, as used
in DOWSER, will be key to ensure good precision for the prioritization early on.
Another research area is to identify possibilities for prioritization within binary
only programs. Existing reverse engineering techniques can give a surprisingly
in-depth look into binaries today, even if they lack the precision and detail of
source-based solutions. Research into this area would allow guided fuzzing to
be expanded outside of the realm of software developers into the hands of third-
party security analysts.

~
<
&
Q.
©
<
O

2. Measurable control-flow integrity for C. Our white-box testing approach for

132 CHAPTER 7. CONCLUSION

vtable-based call-sites was successful due to the detailed semantics encoded into
these artifacts within the C++ language. Unfortunately these semantics are miss-
ing from C-style indirect call-sites, making them difficult to protect in a measur-
able manner. We believe however, that lessons from white-box testing might still
offer an avenue to generate a benchmark with solid ground-truth for this problem
space. While optimal solutions are not expected any time soon (due to the com-
plexity of the problem at hand), having a proper standardized baseline benchmark
is still preferable for future research and evaluation. A important research ques-
tion on this topic is the potential to build a generic enough benchmark, to avoid
researchers trying to game the benchmark itself.

3. Efficient memory safety for C/C++. Finally, our metadata tracking mechanism
offers a solid starting point for memory safety instrumentation, but researchers
now have to look at the facilities it offers and the opportunities opened up by its
characteristics. We hope that new low-overhead techniques will be soon show-
cased on top of METALLOC, bringing aspects of memory safety into production
C/C++ systems. Such instrumentation becomes more and more valuable as data-
only attacks start to proliferate and the other mitigation steps become less and
less effective going forward.

References

[1] Itanium C++ ABI. mentorembedded.github.io/cxx-abi/abi.html.

[2] CVE-2009-2629: Buffer underflow vulnerability in nginx.
http://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-2009-2629.

[3] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-Flow
integrity. In Proceedings of the 12th ACM Conference on Computer and Com-
munications Security, pages 340-353, 2005.

[4] Amir D. Aczel and Jayavel Sounderpandian. Complete Business Statistics.
Sixth edition, 2006.

[5] Periklis Akritidis. Cling: A memory allocator to mitigate dangling pointers.
In Proceedings of the 19th USENIX Conference on Security, 2010.

[6] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel
Castro. Preventing memory error exploits with wit. In Proceedings of IEEE
Symposium on Security and Privacy, pages 263-277, 2008.

[7] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy
bounds checking: An efficient and backwards-compatible defense against
out-of-bounds errors. In Proceedings of the 18th USENIX Conference on
Security, pages 51-66, 2009.

[8] S. Andersen and V. Abella. Changes to Functionality in Microsoft Windows
XP Service Pack 2, Part 3: Memory Protection Technologies, Data Exe-
cution Prevention. http://technet.microsoft.com/en-us/library/
bb457155 . aspx.

[9]_Aravind Prakash, Xunchao Hu, and Heng Yin. vfGuard: Strict Protection for
Virtual Function Calls in COTS C++ Binaries. In Proceedings of the Network

133

mentorembedded.github.io/cxx-abi/abi.html
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx

134

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

CHAPTER 7. CONCLUSION

and Distributed System Security Symposium, 2015.

A. Arya. Analyzing chrome crash reports at scale. In Nullcon International
Security Conference Goa, 2015.

B. Aydin, G. Pataki, H. Wang, E. Bullit, and J.S. Marron. a principal compo-
nent analysis for trees. Annals of Statistics, 3(4):1597-1615, 2009.

Domagoj Babi¢, Lorenzo Martignoni, Stephen McCamant, and Dawn Song.
Statically-directed dynamic automated test generation. In Proceedings of the

2011 International Symposium on Software Testing and Analysis, pages 12—
22,2011.

Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86
binary executables. In Proceedings of the International Conference on Com-
piler Construction, pages 5-23, 2004.

Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitelbaum.
Codesurfer/x86—a platform for analyzing x86 executuables. In Lecture Notes
in Computer Science, pages 250-254, 2005.

Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin Almeroth, Richard
Kemmerer, and Giovanni Vigna. SNOOZE: toward a stateful network pro-
tocol fuzZEr. In Proceedings of the 9th International Conference on Infor-
mation Security, pages 343-358, 2006.

Tao Bao, Yunhui Zheng, Zhigiang Lin, Xiangyu Zhang, and Dongyan Xu.
Strict control dependence and its effect on dynamic information flow analyses.

In Proceedings of the 2010 International Symposium on Software Testing and
Analysis, pages 13-24, 2010.

Igor Bogudlov, Tal Lev-Ami, Thomas Reps, and Mooly Sagiv. Revamping
TVLA: making parametric shape analysis competitive. In Proceedings of the
International Conference on Computer Aided Verification, pages 221-225,
2007.

E. Bounimova, P. Godefroid, and D. Molnar. Billions and billions of con-
straints: Whitebox fuzz testing in production. In Proceedings of the Interna-
tional Conference on Software Engineering, pages 122—131, 2013.

Dimitar Bounov, Rami Gokhan Kici, and Sorin Lerner. Protecting c++ dy-
namic dispatch through vtable interleaving. In Proceedings of the Network
and Distributed System Security Symposium, 2016.

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Daw-
son R. Engler. EXE: Automatically generating inputs of death. In Proceed-

ings of the 13th ACM Conference on Computer and Communications Security,
pages 322-335, 2006.

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

135

Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX Symposium on Operating Systems Design
and Implementation, pages 209-224, 2008.

Nicholas Carlini and David Wagner. ROP is Still Dangerous: Breaking Mod-
ern Defenses. In Proceedings of the 23rd USENIX Conference on Security,
pages 385-399, 2014.

Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and
Thomas R Gross. Control-flow bending: On the effectiveness of control-flow
integrity. In Proceedings of the 24th USENIX Conference on Security, pages
161-176, 2015.

Lorenzo Cavallaro, Prateek Saxena, and R. Sekar. On the Limits of Informa-
tion Flow Techniques for Malware Analysis and Containment. In Proceedings
of the Fifth Conference on Detection of Intrusions and Malware & Vulnera-
bility Assessment, pages 143—163, 2008.

Chao Zhang, Chengyu Songz, Kevin Zhijie Chen, Zhaofeng Cheny, and Dawn
Song. VTint: Protecting Virtual Function Tables’ Integrity. In Proceedings of
the Network and Distributed System Security Symposium, 2015.

Xi Chen, Asia Slowinska, and Herbert Bos. Detecting custom memory allo-
cators in C binaries. Technical report, Vrije Universiteit Amstetrdam, 2013.

Yueqiang Cheng, Zongwei Zhou, Miao Yu, Xuhua Ding, and Robert H. Deng.
ROPecker: A Generic and Practical Approach For Defending Against ROP
Attacks. In Proceedings of the Network and Distributed System Security Sym-
posium, 2014.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: A plat-
form for in vivo multi-path analysis of software systems. In Proceedings of
the International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 265-278, 2011.

Clang. Clang 3.9 documentation - control flow integrity. http://clang.
11lvm.org/docs/ControlFlowIntegrity.html.

Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco
Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
Losing control: On the effectiveness of control-flow integrity under stack at-
tacks. In Proceedings of the 22nd ACM Conference on Computer and Com-
munications Security, pages 952-963, 2015.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiser-
son. Introduction to Algorithms. 2001.

http://clang.llvm.org/docs/ControlFlowIntegrity.html
http://clang.llvm.org/docs/ControlFlowIntegrity.html

136

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

CHAPTER 7. CONCLUSION

Microsoft Corporation. Secuirty development lifecycle. https://msdn.
microsoft.com/en-us/library/bb288454 . aspx.

C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic Adaptive Detec-
tion and Prevention of Buffer-Overflow Attacks. In Proceedings of the 7th
USENIX Security Symposium, pages 63-78, 1998.

Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. Digging for
data structures. In Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, pages 255-266, 2008.

Weidong Cui, Marcus Peinado, Zhilei Xu, and Ellick Chan. Tracking rootkit
footprints with a practical memory analysis system. In Proceedings of the
21st USENIX Conference on Security, pages 601-615, 2012.

CWE/SANS. CWE/SANS TOP 25 Most Dangerous Software Errors. www .
sans.org/top25-software-errors.

Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Flsher, Thorsten
Holz, Ralf Hund, Stefan Niirnberger, and Ahmad-Reza Sadeghi. MoCFI: A
Framework to Mitigate ControlFlow Attacks on Smartphones. In Proceedings
of the Network and Distributed System Security Symposium, pages 32—44,
2012.

Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose.
Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-
Flow Integrity Protection. In Proceedings of the 23rd USENIX Conference
on Security, pages 401-416, 2014.

J. DeMott. The evolving art of fuzzng. DEFCON 14, http://www.
appliedsec.com/files/The_Evolving_ Art_of_Fuzzing.odp.

David Dewey and Jonathon Giffin. Static detection of c++ vtable escape vul-
nerabilities in binary code. In Proceedings of the Network and Distributed
System Security Symposium, 2012.

Dinakar Dhurjati and Vikram Adve. Backwards-compatible array bounds
checking for ¢ with very low overhead. In Proceedings of the International
Conference on Software Engineering, pages 162-171, 2006.

Dawson Engler and Madanlal Musuvathi. Static analysis versus software
model checking for bug finding. In Bernhard Steffen and Giorgio Levi, edi-
tors, Verification, Model Checking, and Abstract Interpretation, volume 2937
of Lecture Notes in Computer Science, pages 191-210. 2004.

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco;Matthew.S.- Tschantz, and Chen Xiao. The daikon system for dy-

https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
www.sans.org/top25-software-errors
www.sans.org/top25-software-errors
http://www.appliedsec.com/ files/The_Evolving_Art_of_Fuzzing.odp
http://www.appliedsec.com/ files/The_Evolving_Art_of_Fuzzing.odp

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

137

namic detection of likely invariants. Sci. Comput. Program., 69(1-3):35-45,
2007.

Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Ri-
nard, Hamed Okhravi, and Stelios Sidiroglou-Douskos. Control jujutsu: On
the weaknesses of fine-grained control flow integrity. In Proceedings of the

22nd ACM Conference on Computer and Communications Security, pages
901-913, 2015.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-
dence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems, 9:319-349, 1997.

The Mozilla Foundation. Dromaeo, javascript performance testing. https:
//www.webkit.org/perf/sunspider/sunspider.html.

Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed whitebox
fuzzing. In Proceedings of the International Conference on Software Engi-
neering, pages 474-484, 2009.

Michael Gegick, Laurie Williams, Jason Osborne, and Mladen Vouk. Pri-
oritizing software security fortification through code-level metrics. In Pro-
ceedings of the 4th ACM Workshop on Quality of Protection, pages 31-38,
2008.

Sanjay Ghemawat and Paul Menage. Tcmalloc: Thread-caching malloc.
http://goog-perftools.sourceforge.net/doc/tcmalloc.html.

Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a cyclic graph?
A shape analysis for heap-directed pointers in C. In Proceedings of the
23rd ACM Symposium on Principles of Programming Languages, pages 1—
15, 1996.

Patrice Godefroid and Daniel Luchaup. Automatic partial loop summariza-
tion in dynamic test generation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, pages 23-33, 2011.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed auto-
mated random testing. In Proceedings of the ACM Conference on Program-
ming Language Design and Implementation, pages 213-223, 2005.

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated
Whitebox Fuzz Testing. In Proceedings of the Network and Distributed Sys-
tem Security Symposium, pages 151-166, 2008.

Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis.
Out of control: Overcoming control-flow integrity. In Proceedings of IEEE
Symposiunon-Security.and-Privacy, pages 575-589, 2014.

https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

138

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

CHAPTER 7. CONCLUSION

Enes Goktas, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos,
and Georgios Portokalidis. Size Does Matter: Why Using Gadget-Chain
Length to Prevent Code-Reuse Attacks is Hard. In Proceedings of the 23rd
USENIX Conference on Security, pages 417-432, 2014.

Enes Goktas, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos,
Georgios Portokalidis, Cristiano Giuffrida, and Herbert Bos. Undermining
information hiding (and what to do about it). In Proceedings of the 25th
USENIX Conference on Security, pages 105-119, 2016.

Google. Octane benchmark. https://code.google.com/p/octane-
benchmark.

Google. Sunspider benchmark. https://www.webkit.org/perf/
sunspider/sunspider.html.

Philip J. Guo, Jeff H. Perkins, Stephen McCamant, and Michael D. Ernst.
Dynamic inference of abstract types. In Proceedings of the 2006 International
Symposium on Software Testing and Analysis, pages 255-265, 2006.

Wang H. and J.S. Marron. Object oriented data analysis: Sets of trees. Annals
of Statistics, 35(5):1849-1873, 2007.

Istvan Haller, Asia Slowinska, and Herbert Bos. Mempick: High-level data
structure detection in c/c++ binaries. In Proceedings of the 20th Working
Conference on Reverse Engineering, pages 32—41, 2013.

Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos.
Dowsing for overflows: A guided fuzzer to find buffer boundary violations.
In Proceedings of the 22nd USENIX Conference on Security, pages 49—64.
USENIX, 2013.

Istvan Haller, Enes Goktasg, Elias Athanasopoulos, Georgios Portokalidis, and
Herbert Bos. Shrinkwrap: Vtable protection without loose ends. In Proceed-
ings of the 31st Annual Computer Security Applications Conference, pages
341-350, 2015.

Istvan Haller, Asia Slowinska, and Herbert Bos. Scalable data structure de-
tection and classification for c/c++ binaries. Empirical Software Engineering,
pages 1-33, 2015.

Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida,
Herbert Bos, and Erik van der Kouwe. Typesan: Practical type confusion
detection. In Proceedings of the 23rd ACM Conference on Computer and
Communications Security, pages 517-528, 2016.

Istvan Haller, Erik van der Kouwe, Cristiano Giuffrida, and Herbert Bos. Met-
alloc: Efficient.and.comprehensive metadata management for software secu-

https://code.google.com/p/octane-benchmark
https://code.google.com/p/octane-benchmark
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

139

rity hardening. In Proceedings of the 9th ACM European Workshop on System
Security, pages 5:1-5:6, 2016.

Niranjan Hasabnis, Ashish Misra, and R Sekar. Light-weight bounds check-
ing. In Proceedings of the Tenth International Symposium on Code Genera-
tion and Optimization, pages 135-144, 2012.

John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 34(4):1-17, 2006.

H. Hotelling. Analysis of a complex of statistical variables into principal
components. J. Educ. Psych., 24, 1933.

Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. Automatic generation of data-oriented exploits. In Proceedings of the
24th USENIX Conference on Security, pages 177-192, 2015.

Intel. Pin - A Dynamic Binary Instrumentation Tool. http://www.
pintool.org/.

Dongseok Jang, Zachary Tatlock, and Sorin Lerner. SAFEDISPATCH: Se-
curing C++ virtual calls from memory corruption attacks. In Proceedings of
the Network and Distributed System Security Symposium, 2014.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bow-
didge. Why don’t software developers use static analysis tools to find bugs?
In Proceedings of the 2013 International Conference on Software Engineer-
ing, pages 672—-681, 2013.

Changhee Jung and Nathan Clark. DDT: design and evaluation of a dy-
namic program analysis for optimizing data structure usage. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 56-66, 2009.

Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and Santosh
Pande. Brainy: Effective selection of data structures. In Proceedings of the
32nd ACM Conference on Programming Language Design and Implementa-
tion, pages 86-97, 2011.

R. Kaksonen. A functional method for assessing protocol implementation
security. Technical Report 448, VTT, 2001.

Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
DTA++: Dynamic taint analysis with targeted control-flow propagation. In
Proceedings of the Network and Distributed System Security Symposium,
2011.

Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized sym-
bolic execution for model checking and testing. In Proceedings of the 9th

http://www.pintool.org/
http://www.pintool.org/

140

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

CHAPTER 7. CONCLUSION

International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 553-568, 2003.

Viktor Kuncak, Patrick Lam, Karen Zee, and Martin Rinard. Modular Plug-
gable Analyses for Data Structure Consistency. IEEE Transactions on Soft-
ware Engineering, 32(12):988-1005, 2006.

Volodymyr Kuznetsov, Laszl6 Szekeres, Mathias Payer, George Candea,
R. Sekar, and Dawn Song. Code-pointer integrity. In Proceedings of the
11th USENIX Symposium on Operating Systems Design and Implementation,
pages 147-163, 2014.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for life-
long program analysis & transformation. In Proceedings of the Second In-

ternational Symposium on Code Generation and Optimization, pages 75-86,
2004.

Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. Caver
source code. https://github.com/sslab-gatech/caver.

Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim,
Long Lu, and Wenke Lee. Preventing use-after-free with dangling pointers
nullification. In Proceedings of the Network and Distributed Systems Security
Symposium, 2015.

Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. Type cast-
ing verification: Stopping an emerging attack vector. In Proceedings of the
24th USENIX Conference on Security, pages 81-96, 2015.

Jonghyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Principled re-
verse engineering of types in binary programs. In Proceedings of the Network
and Distributed System Security Symposium, 2011.

Zhigiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse engineer-
ing of data structures from binary execution. In Proceedings of the Network
and Distributed System Security Symposium, 2010.

Zhigiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian
Jiang. SigGraph: Brute Force Scanning of Kernel Data Structure Instances
Using Graph-based Signatures. In Proceedings of the Network and Dis-
tributed System Security Symposium, 2011.

Paul Dan Marinescu and Cristian Cadar. Make test-zesti: A symbolic execu-
tion solution for improving regression testing. In Proceedings of the Interna-
tional Conference on Software Engineering, pages 716-726, 2012.

Paul Dan Marinescu and Cristian Cadar. Katch: High-coverage testing of
software-patehes--In-Proceedings of the 2013 9th Joint Meeting on Founda-

https://github.com/sslab-gatech/caver

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

141

tions of Software Engineering, pages 235-245, 2013.

Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the
reliability of UNIX utilities. Commun. ACM, 33:32-44, 1990.

Mitre. Common Vulnerabilities and Exposures (CVE). http://cve.mitre.
org/.

David Molnar, Xue Cong Li, and David A. Wagner. Dynamic test generation
to find integer bugs in x86 binary linux programs. In Proceedings of the 18th
conference on USENIX security symposium, pages 67-82, 2009.

Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple
execution paths for malware analysis. In Proceedings of IEEE Symposium on
Security and Privacy, pages 231-245, 2007.

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F Sweeney.
Producing wrong data without doing anything obviously wrong! ACM Sig-
plan Notices, 44(3):265-276, 2009.

Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to
predict component failures. In Proceedings of the International Conference
on Software Engineering, pages 452—-461, 2006.

Nicholas Nethercote and Julian Seward. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In Proceedings of the Third Inter-
national ACM Conference on Virtual Execution Environments, pages 89—100,
2007.

James Newsome and Dawn Song. Dynamic taint analysis: Automatic de-
tection, analysis, and signature generation of exploit attacks on commodity
software. In Proceedings of the Network and Distributed Systems Security
Symposium, 2005.

Viet Hung Nguyen and Le Minh Sang Tran. Predicting vulnerable software
components with dependency graphs. In Proceedings of the 6th International
Workshop on Security Measurements and Metrics, pages 3:1-3:8, 2010.

Ben Niu and Gang Tan. Modular Control-flow Integrity. In Proceedings of
the ACM Conference on Programming Language Design and Implementation,
pages 577-587, 2014.

Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano
Giuffrida. Poking holes in information hiding. In Proceedings of the 25th
USENIX Conference on Security, pages 121-138, 2016.

Aleph One. Smashing the stack for fun and profit. Phrack magazine, 7(49):
365, 1996.

Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Trans-

http://cve.mitre.org/
http://cve.mitre.org/

142

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

CHAPTER 7. CONCLUSION

parent ROP Exploit Mitigation Using Indirect Branch Tracing. In Proceedings
of the 22nd USENIX Conference on Security, pages 447-462, 2013.

PaX Project. Address Space Layout Randomization. http://pax.
grsecurity.net/docs/aslr.txt.

Marina Polishchuk, Ben Liblit, and Chloé W. Schulze. Dynamic heap type
inference for program understanding and debugging. In Proceedings of the
34th ACM Symposium on Principles of Programming Languages, pages 3—40,
2007.

Google Chromium Project. Undefined behavior sanitizer. https://www.
chromium.org/developers/testing/undefinedbehaviorsanitizer.

Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-
Burlet, Michael Lowry, Suzette Person, and Mark Pape. Combining unit-
level symbolic execution and system-level concrete execution for testing nasa
software. In Proceedings of the 2008 International Symposium on Software
Testing and Analysis, pages 15-26, 2008.

Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt. Precise garbage
collection for c. In Proceedings of the International Symposium on Memory
Management, pages 39-48, 2009.

Ganesan Ramalingam, John Field, and Frank Tip. Aggregate structure iden-
tification and its application to program analysis. In Proceedings of the 26th
ACM Symposium on Principles of Programming Languages, pages 119-132,
1999.

Easwaran Raman and David I. August. Recursive data structure profiling. In
Proceedings of the Workshop on Memory System Performance, pages 5—14,
2005.

Thomas Reps and Gogul Balakrishnan. Improved memory-access analysis
for x86 executables. In Proceedings of the Joint European Conferences on
Theory and Practice of Software, pages 16-35, 2008.

Christian Rossow, Dennis Andriesse, Tillmann Werner, Brett Stone-Gross,
Daniel Plohmann, Christian J. Dietrich, and Herbert Bos. P2PWNED: Mod-
eling and Evaluating the Resilience of Peer-to-Peer Botnets . In Proceedings
of IEEE Symposium on Security and Privacy , pages 97-111, 2013.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analy-
sis via 3-valued logic. In Proceedings of the 26th ACM Symposium on Prin-
ciples of Programming Languages, pages 105-118, 1999.

Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-
Reza Sadeghiyand Thersten-Holz. Counterfeit Object-oriented Programming:

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://www.chromium.org/developers/testing/undefinedbehaviorsanitizer
https://www.chromium.org/developers/testing/undefinedbehaviorsanitizer

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

143

On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In
Proceedings of IEEE Symposium on Security and Privacy, pages 745-762,
2015.

Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit test-
ing engine for C. In Proceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM International Symposium on Founda-
tions of Software Engineering, pages 263-272, 2005.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. AddressSanitizer: A fast address sanity checker. In Proceedings of
the USENIX Annual Technical Conference, page 28, 2012.

Hovav Shacham. The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86). In Proceedings of the 14th
ACM Conference on Computer and Communications Security, pages 552—
561, 2007.

Yonghee Shin and Laurie Williams. An initial study on the use of execution
complexity metrics as indicators of software vulnerabilities. In Proceedings of
the 7th International Workshop on Software Engineering for Secure Systems,
pages 1-7, 2011.

Asia Slowinska and Herbert Bos. Pointless tainting?: evaluating the practi-
cality of pointer tainting. In Proceedings of the ACM European Conference
on Computer Systems, pages 61-74, 2009.

Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: a dynamic ex-
cavator for reverse engineering data structures. In Proceedings of the Network
and Distributed System Security Symposium, 2011.

Asia Slowinska, Traian Stancescu, and Herbert Bos. Body Armor for Bina-
ries: preventing buffer overflows without recompilation. In Proceedings of
the USENIX Annual Technical Conference, pages 125-137, 2012.

Kevin Z. Snow, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen,
Fabian Monrose, and Ahmad-Reza Sadeghi. Just-In-Time Code Reuse: On
the Effectiveness of Fine-Grained Address Space Layout Randomization. In
Proceedings of IEEE Symposium on Security and Privacy, pages 574-588,
2013.

Alexander Sotirov. Modern exploitation and memory protection bypasses.
USENIX Security invited talk, http://www.usenix.org/events/sec09/
tech/slides/sotirov.pdf.

Spike. http://www.immunitysec.com/resources-freesoftware.
shtml.

http://www.usenix.org/events/sec09/tech/slides/sotirov.pdf
http://www.usenix.org/events/sec09/tech/slides/sotirov.pdf
http://www.immunitysec.com/resources-freesoftware.shtml
http://www.immunitysec.com/resources-freesoftware.shtml

144

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

CHAPTER 7. CONCLUSION

Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional, 2007.

Laszl6 Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war
in memory. In Proceedings of IEEE Symposium on Security and Privacy,
pages 48-62, 2013.

Miklos Szeredi. File system in user space. http://fuse.sourceforge.
net.

Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ulfar
Erlingsson, Luis Lozano, and Geoff Pike. Enforcing Forward-edge Control-
flow Integrity in GCC and LLVM. In Proceedings of the 23rd USENIX Con-
ference on Security, pages 340-353, 2014.

Victor van der Veen, Nitish Dutt-Sharma, Lorenzo Cavallaro, and Herbert
Bos. Memory Errors: The Past, the Present, and the Future. In Proceedings
of The 15th International Symposium on Research in Attacks, Intrusions and
Defenses, pages 86—106, 2012.

Victor van der Veen, Dennis Andriesse, Enes Goktag, Ben Gras, Lionel Sam-
buc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. Practical Context-
Sensitive CFL. In Proceedings of the 22nd ACM Conference on Computer and
Communications Security, pages 927-940, 2015.

Victor van der Veen, Enes Goktas, Moritz Contag, Andre Pawlowski,
Xi Chen, Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos,
and Cristiano Giuffrida. A tough call: Mitigating advanced code-reuse at-
tacks at the binary level. In Proceedings of IEEE Symposium on Security and
Privacy, pages 934-953, 2016.

Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes Kinder.
High system-code security with low overhead. In Proceedings of IEEE Sym-
posium on Security and Privacy, pages 866—879, 2015.

Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detec-

tion. In Proceedings of the IEEE Symposium on Security and Privacy, pages
497-512, 2010.

David H. White and Gerald Liittgen. Identifying dynamic data structures by
learning evolving patterns in memory. In Proceedings of the 19th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 354-369, 2013.

Nicky Williams, Bruno Marre, and Patricia Mouy. On-the-Fly Generation of
K-Path Tests for C Functions. In Proceedings of the 19th IEEE International
Conference on Automated Software Engineering, pages 290-293, 2004.

http://fuse.sourceforge.net
http://fuse.sourceforge.net

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

145

Christopher J. Van Wyk. Data Structures and C Programs, 2nd Ed. (Addison-
Wesley Series in Computer Science). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition, 1991.

Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook,
Dino Distefano, and Peter W. O’Hearn. Scalable shape analysis for systems
code. In Aarti Gupta and Sharad Malik, editors, CAV, volume 5123 of Lecture
Notes in Computer Science, pages 385-398, 2008.

Yves Younan. FreeSentry: Protecting Against Use-After-Free Vulnerabilities
Due to Dangling Pointers. In Proceedings of the Network and Distributed
System Security Symposium, 2015.

Karen Zee, Viktor Kuncak, and Martin Rinard. Full functional verification of
linked data structures. In Proceedings of the ACM Conference on Program-
ming Language Design and Implementation, pages 349-361, 2008.

Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszl6 Szekeres, Stephen
McCamant, Dawn Song, and Wei Zou. Practical Control Flow Integrity and
Randomization for Binary Executables. In Proceedings of IEEE Symposium
on Security and Privacy, pages 559-573, 2013.

Chao Zhang, Scott A. Carr, Tongxin Li, Yu Ding, Chengyu Song, Mathias
Payer, and Dawn Song. Vtrust: Regaining trust on virtual calls. In Proceed-
ings of the Network and Distributed System Security Symposium, 2016.

Mingwei Zhang and R. Sekar. Control flow integrity for cots binaries. In
Proceedings of the 22Nd USENIX Conference on Security, pages 337-352,
2013.

Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams. Search-
ing for a Needle in a Haystack: Predicting Security Vulnerabilities for Win-
dows Vista. In Proceedings of the 3rd International Conference on Software
Testing, Verification and Validation, pages 421-428, 2010.

Misha Zitser, Richard Lippmann, and Tim Leek. Testing static analysis tools
using exploitable buffer overflows from open source code. In Proceedings
of the 12th ACM International Symposium on Foundations of Software Engi-
neering, pages 97-106, 2004.

Summary

With new security incidents surfacing almost every single day, software vendors
must meet ever-increasing standards of quality in systems security. As such, major
vendors now spend massive amounts of resources to test their products and minimize
the probability of exploitable software bugs—the kind of bugs that allow attackers to
completely compromise a target system. In particular, much effort is devoted to very
dangerous bugs that corrupt memory. Despite all these efforts, memory corruption
bugs are still pervasive in systems software, with well-known examples such as the
Heartbleed and StageFright vulnerabilities putting millions of users at risk. Since it
is impossible to completely eradicate these bugs, the only option is to mitigate their
impact in practice.

This dissertation considers all the stages in which one may protect software
against attacks based on memory corruption bugs: testing before deployment, de-
tection of corruption attempts after deployment for the bugs that we cannot find by
testing, and exploit containment for the bugs that we cannot easily detect. Such a
symbiosis between software testing and systems security can get us closer to a solu-
tion. Lessons learned in systems security help us concentrate the testing efforts on
the areas of the program which are expected to be most vulnerable. Lessons learned
in software testing help us incorporate validation techniques into the workflow of
security solutions. Drawing from such lessons, this dissertation presents a concert
of techniques at different layers of systems security, including bug finding, memory
corruption detection, and control-flow enforcement.

In bug finding, this dissertation introduces guided fuzzing based on security pri-
oritization, which aims to prioritize the testing effort around likely vulnerable code
artefacts..Such prioritization typically occurs as part of white-box testing with man-
ual input from developers, but we show that we can automate this process using

147

148 SUMMARY

static source analysis. This strategy lays the ground for effective modular testing, by
automatically inferring the need to test certain code artefacts and avoid others.

In addition, this dissertation explores reverse engineering techniques to extend
the guided fuzzing approach to scenarios where no source information is available.
There is a significant gap in the literature regarding the classification of pointer-based
data structures in binary programs. I bridge this gap via a novel approach based on
behavioral tracking and a classifier based on refinement.

The dissertation also identifies issues in existing state-of-the-art control-flow en-
forcement schemes, including the one implemented in the GCC compiler today. I
counter this threat by developing a novel white-box testing framework for a cer-
tain class of control-flow enforcement schemes, which allows developers to check
if their mitigation fully respects C++ semantics, while at the same time offering the
strongest possible protection for the program. I then leverage the framework to build
a new mitigation, which fully achieves these goals, while also being faster than the
variant used in GCC.

Finally, this dissertation shows that a major reason that enforcement of memory
safety rules in C/C++ is inefficient lies in the overhead imposed by metadata track-
ing. I developed a new scheme, called variable metadata shadowing, which alleviates
these concerns. My scheme is flexible enough to implement a wide range of memory
safety checks, while imposing minimal performance and memory overhead during
the execution. I then validate the metadata tracker in a novel type enforcement sys-
tem, which detects type confusion bugs in real-world software (such as browser with
over a million lines of code). The metadata tracker forms the backbone of this miti-
gation mechanism and I show that it can protect real applications with much greater
efficiency than any other solution.

In conclusion, this dissertation presents evidence that we need a strong coupling
between the areas of software testing and systems security. The best solution is to
layer different techniques on top of one another and I show how each layer can be
greatly enhanced via the proposed symbiosis.

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Publications
	1 Introduction
	2 Dowsing for overflows: A guided fuzzer to find buffer boundary violations
	2.1 Introduction
	2.2 Big picture
	2.2.1 Running example
	2.2.2 High-level overview

	2.3 Dowsing for candidate instructions
	2.3.1 Building analysis groups
	2.3.2 Conditions guarding analysis groups
	2.3.3 Scoring array accesses

	2.4 Using tainting to find inputs that matter
	2.4.1 Baseline: dynamic taint analysis
	2.4.2 Field shifting to weed out false dependencies

	2.5 Exploring candidate instructions
	2.5.1 Baseline: concrete + symbolic execution
	2.5.2 Phase 1: learning
	2.5.3 Phase 2: hunting bugs

	2.6 Evaluation
	2.6.1 Case study: Nginx
	2.6.2 Overview

	2.7 Related work
	2.8 Conclusion

	3 Scalable Data Structure Detection and Classification for C/C++ Binaries
	3.1 Introduction
	3.1.1 Contributions
	3.1.2 Outline

	3.2 Static versus dynamic analysis
	3.3 Example applications
	3.3.1 Case study 1: Malware analysis
	3.3.2 Case study 2: Security hardening for third party applications

	3.4 MemPick
	3.5 Memory Graphs: Interconnected Heap Objects
	3.6 From Memory Graph to Individual Data Structures
	3.7 Shape Detection
	3.7.1 Overlapping Data Structure Identification
	3.7.2 Data Structure Classification
	3.7.3 Refinement Classifiers for Special Data Structures

	3.8 Classification of Height-balanced Trees
	3.9 Final Mapping
	3.10 Evaluation
	3.10.1 Popular Libraries
	3.10.2 Applications
	3.10.3 System code

	3.11 Complexity Analysis
	3.11.1 Executing the application
	3.11.2 Trace generation
	3.11.3 Type inference
	3.11.4 Graph generation
	3.11.5 Shape analysis
	3.11.6 Summary of complexity analysis

	3.12 Limitations and Future Work
	3.13 Related Work
	3.14 Conclusion

	4 ShrinkWrap: VTable Protection without Loose Ends
	4.1 Introduction
	4.2 VTable Protection Today
	4.2.1 C++ dynamic dispatching
	4.2.2 VTable integrity and limitations

	4.3 ShrinkWrapping the VTables
	4.3.1 Precise call-site type inference
	4.3.2 Legitimate VTable targets

	4.4 Stronger VTable Protection
	4.4.1 An extension to VTV
	4.4.2 Optimal VTable protection

	4.5 Evaluation
	4.5.1 Microbenchmark evaluating correctness
	4.5.2 Chrome

	4.6 Related Work
	4.7 Conclusion
	4.8 Acknowledgment

	5 METAlloc: Efficient and Comprehensive Metadata Management for Software Security Hardening
	5.1 Introduction
	5.2 METAlloc
	5.2.1 Efficient retrieval of page information
	5.2.2 Static versus dynamic metadata
	5.2.3 Instrumentation across memory types
	5.2.4 Implementation specifics

	5.3 Applications
	5.3.1 Write Integrity Protection
	5.3.2 Bounds Checking
	5.3.3 Type Confusion Detection
	5.3.4 Dangling Pointer Detection

	5.4 Evaluation
	5.5 Conclusion
	5.6 Acknowledgment

	6 TypeSan: Practical Type Confusion Detection
	6.1 Introduction
	6.2 Background
	6.2.1 Type confusion
	6.2.2 Defenses against type confusion

	6.3 Threat model
	6.4 Overview
	6.5 Instrumentation layer
	6.5.1 Instrumenting allocations
	6.5.2 Instrumenting typecasts

	6.6 Type management service
	6.6.1 Type layout tables
	6.6.2 Type relationship tables
	6.6.3 Merging type information across source files

	6.7 Metadata storage service
	6.8 Limitations
	6.9 Evaluation
	6.9.1 Performance
	6.9.2 Coverage

	6.10 Related work
	6.11 Conclusion

	7 Conclusion
	References
	Summary

